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ABSTRACT 

Bulk metallic glasses (BMGs) are amorphous metals with impressive mechanical 

properties, such as high elastic strain up to 2%, high strength (up to 2% of Young’s modulus) 

and high hardness. Their weight normalized properties exceed the high strength to weight 

ratio of titanium alloys. Because of the lack of crystalline defects such as grain boundaries 

and dislocations, they have good corrosion resistance and good formability. The unique die 

molding properties of BMGs render them as excellent candidates for micro-scale machine 

parts, pressure sensor, golf clubs and casings. BMG’s also exhibit enhanced plastic creep 

resistance, since homogeneous plastic deformation is inhibited at room temperature. Below 

the glass transition temperature, BMGs exhibit inhomogeneous plastic flow through the 

formation of localized shear bands. Under unconfined loading geometry, BMGs fails in a 

brittle material manner with unstable propagation of a single shear band. However, under 

confined geometry, BMG’s show increased ductility due to the ability to nucleate and 

propagate multiple shear bands. 

This dissertation focuses on experimentally analyzing evolution and propagation of 

the shear bands in BMGs and their composites, by monitoring the deformation mechanisms 

at the scale of the shear band under confined geometry. Wedge-like cylindrical indentation 

has been used to provide a stable loading configuration for in-situ observation of the 

inhomogeneous deformation zone underneath the indenter. High resolution digital camera 

has been employed to capture surface images of the evolution of the process-zone. An in-

house digital image correlation (DIC) program has been developed, utilizing MATLAB 

commercial software, to calculate the in-plane finite strain distribution at the scale of the 
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shear band.  First, the plastic deformation and flow field under the indenter are studied in 

both aluminum and copper alloys with different grain sizes to verify and validate the analysis 

protocol. The measured plastic zone size is comparable with the one predicted by the 

simplified cavity model and there is a unique correlation of the strain distribution along the 

radial line with different angular positions originating from the indentation center. The 

deformation zones developed under indenters with different radii are found to be self-similar. 

In the elastic domain, the measured strain distribution agree with FEM predictions; in the 

elastic-plastic domain, extra hardening is observed, which could be the result of  constrained 

deformation.  

Second, the inhomogeneous deformation behavior of Vitreloy-1 bulk metallic glass is 

examined at room temperature. To overcome the resolution limit of the DIC technique to 

resolve the strain within a single shear band having 10-20nm width, an alternative method is 

implemented, addressing the strain jump within the band and the surrounding matrix. The 

results show that the BMG can deform homogenously to a large elastic strain level of about 

4-6% before the onset of inhomogeneous deformation via localized shear bands. Such 

observation indicates the ability of BMG to withstand such high levels of stresses and strains 

if unstable shear band can be suppressed from the nucleation from the surface, such as the 

case of tension or bending. Following the perturbation analysis of Hwang et al (2004) and 

utilizing the same material parameters, it is found that homogenous nucleation strain is of the 

same order. The experimental measurements show more subtle details about the kinematics 

of shear band propagations. The shear band propagates intermittently at the expense of the 

surrounding matrix stored elastic strain energy. The surrounding matrix ceases to deform, 



xxii 
 

during the activity of the shear band, however, no unloading is observed. The accumulated 

strain level inside of the shear band is about 3 orders higher than the one in the surrounding 

matrix. By tracking the strain increments of a single shear band and its surrounding matrix, 

the deformation filed has been shown to be self-similar, within the surrounding matrix. While 

the stress state at the observation point is defined by the global indentation filed, the local 

stress state within the shear band is a simple shear state, with respect to the band propagation 

direction. Relative to the band-propagation direction and the corresponding normal, the 

surrounding matrix deforms in a pure shear-state to accommodate shear band deformation. 

The experimental protocol is also utilized to study the kinematics of shear band 

initiation, propagation and arrest or hindrance by a secondary ductile phase. The deformation 

mechanisms in BMG composite with brass particles are examined. The composite is 

manufactured by warm extrusion of a mix of gas atomized powders of Ni-based BMG and 

brass. The resulting composite has an elongated particulate structure in the extrusion 

direction. The fracture toughness and toughening mechanism of the BMG composites are 

examined in the parallel and normal directions to the extrusion axis. This composite shows 

highly anisotropic properties along different loading directions. For the normal direction 

loading, brass reinforcements not only trigger the initial localized shear band, but also 

modify the crack propagation by crack bridging mechanisms. Also, microcracking is another 

important toughening mechanism. For the parallel direction loading, interface debonding is 

the main failure mechanism. Using FEM simulations, it is shown that local fracture is strain-

controlled along the normal loading direction and stress controlled along the parallel loading 

direction.  
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The proposed experimental framework is further extended for fracture match 

applications in forensic science. The likelihood of matching broken pieces, wherein a 

macroscopic crack trajectory cannot be established is analyzed via spectral analysis of the 3D 

fracture surfaces. The surface topographies are acquired using a non-contact 3D optical 

surface profilometer. A quantitative signature of the fracture surface, employing the different 

length scales of the fracture process zone is derived and used to establish class and sub-class 

matching. The details of the algorithm and its applications are detailed in the Appendix. 
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CHAPTER 1: INTRODCUTION 

Metallic glass also known as amorphous metals was first produced in the form of a 

thin ribbon by splat quenching of Au-Si alloys in the 1960’s [1]. A number of amorphous 

metals had been produced [2-6] with mechanical strength that was much higher than that of 

microcrystalline alloys [7-9]. Following the development of bulk metallic glasses (BMGs), a 

wide range of mechanical characterization were conducted under different conditions.  

Because of the lack of crystalline defects such as grain boundaries and dislocations, BMGs 

show extraordinary mechanical properties, corrosion resistance [10] and good formability.  

1.1 BULK METALLIC GLASS AND COMPOSITE 

The most impressive advantage of BMGs’ mechanical property is their high elastic 

strain of 2% under unconfined tensile loading [11, 12], high strength (up to 2% of Young’s 

modulus) and high hardness [9]. In Vitreloy 1 ( Zr41.25Ti13.75Cu12.5Ni10Be22.5), for example, 

the tensile yield strength is 1.9 GPa and Young’s modulus is 96 GPa [13]. The fracture 

toughness values of Zr-based[14], Cu-based[15], Ti-based[16] and Pd-based[17] glasses are 

higher (45-85 MPa m  ) than that of Fe-based[18] or Mg-based [16] glasses (2-4 MPa m ). 

Though, BMGs fracture catastrophically by highly localized shear band in unconfined 

geometries at ambient temperature, such as uniaxial tension or compression [19, 11, 12]. 

Fig.1.1 presents some typical stress-strain relation of BMG under uniaxial tension or 

compression tests with different loading rates at room temperature. It shows that an increased 

strain rate leads to enhanced ductility in tension and compression [20]. For the BMG 

deformation behavior, an empirical deformation map has been developed [21], classifying 
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BMG flow as homogenous and inhomogeneous. The homogenous flow occurs at low stresses 

and high temperature [22]. Inhomogeneous flow is seen at high stress and low temperatures, 

where the plastic deformation tends to be highly localized into narrow shear bands as show in 

Fig.1.2 [23]. The macroscopic observations also showed asymmetric deformation behavior 

between tensile and compressive loading [11] with moderate pressure dependent 

macroscopic yielding behavior [24-27]. Under geometric confinement, the BMG deformation 

exhibit increased ductility, accompanied with stable shear bands propagation. Especially 

under inhomogeneous loading conditions during ribbon bending [28], crack tip behavior [29] 

and indentation field, either in 2D [30, 27] or 3D [31, 24, 32]. 

 

Figure 1.1 True stress-true strain compression and tension curves of alloys at room 

temperature and at different strain rate.[20] 
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Figure 1.4 schematic representations of microstructures of in situ composite with different 

second phase dispersions and different length scale with (a) qusicrystalline phase, (b) 

spherical shaped nano-micrometer-sized crystals, (c) dendritic phase, and (d) two phase 

amorphous.[53] 

1.2 MOTIVATION  
The microscopic plastic deformation mechanism of crystalline materials is about the 

dislocation motion. However, in amorphous metallic glasses, the plastic deformation is 

fundamentally different to that in crystalline solids because of the lack of long-range order in 

the atomic structure of these materials. The microscopic mechanisms of the BMG 

inhomogeneous deformation is phenomenological viewed as a cooperative behavior of small 

clusters of randomly closed-packed atoms, so called shear transformation zones (STZs) [54]. 

The STZs are thought to create a localization of displacements in surrounding regions (30~50 

atoms) that triggers the evolution of highly localized shear bands during the deformation by 
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creation of free volume [54]. Such phenomenological view has been further corroborated by 

molecular dynamic (MD) simulations [55]. In continuum modeling, the free volume is 

considered to evolve with the applied stress [21]. The BMG plastic flow will occur when the 

free volume created by the applied stress exceeds the annihilation/diffusion rates. This 

microscopic view is generalized by Steif et al. 1982 [56] , Huang et al. 2002 [57] and among 

many others, to describe the initiation and propagation of shear bands. Transmission Electron 

Microscopy (TEM) analysis of the shear bands have indeed shown that the amount of voids 

has increased within a shear band, relative to surroundings [58]. Realizing the differences in 

length scales between TEM observations, MD simulation and the continuum description of 

shear band nucleation and propagations, there is a lack in experimental observation of the 

microscopic deformation evolution for shear bands in BMG. 

Therefore, the goal of current research is to understand BMG inhomogeneous 

deformation evolution over the plastic deformation field and microscopic deformation 

evolution of single shear band, by experimental measurements and the numerical analysis.  

1.3 IMPLEMENTATION PLAN 

Wedge-like Cylindrical Indentation 

BMG shows some degree of ductility under the confined geometry conditions, which 

include indentation tests. Various indentation techniques have been fully developed in the 

past 100 years with widespread use in characterizing the mechanical properties of different 

materials through hardness measurements. Due to the constrained stress states of the field 

underneath the indenter, it provides a stable and non-destructive mean to measure the 
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resistance of a material to plastic deformation. However, the geometrical versatility and 

complicate strain field under the indenter make it difficult to interpret the force indentation 

depth measurements into stress-strain relations in a straight-forward way. A number of 

investigators have pursued the relationship between the mean contact pressure and the 

macroscopic yield strength of materials by the development of analytical models such as 

Cavity Expansion model and all kind of experimental measurements. With the advanced 

instruments invention, the indentation technique has been applied into a wide range of length 

scales and on different materials, and then more explanations about the indentation have been 

addressed. A series of experimental techniques like sectioning, etching and micro hardness 

survey have been utilized to explore the plastic deformation zone under the indenter on 

various kind of materials, such as single crystal, polycrystalline metals and alloys, and even 

amorphous bulk metallic glasses. However, the complex strain filed and the evolution of 

heterogeneous deformation under the indenter still needs a clear statement.  

A newly developed experimental methodology [30] has been adapted, which ensures 

the in-situ observation of the plastic zone evolution and simultaneously imaging records. 

This research is about an experimental study of the evolution of inhomogeneous deformation 

field underneath a wedge-like cylindrical indentation, in which the plastic flow 

characterization and localization evolution will be thoroughly discussed.  

Digital Image Correlation Technique (DIC) 

Digital Image Correlation (DIC) technique was first proposed and has been developed 

since early 1980s to compute the surface strains and displacements [59]. DIC technique is 
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computer based and non-contact  measuring full-field surface strains that has been 

demonstrated to be robust, flexible, applicable to large deformation and over a wide range of 

size scales and very affordable. The resolution of the measurements is determined by two 

main factors, those are the magnification of the acquisition system and the characteristics of 

the image sensing element. The underlying principle of digital image correlation as a 

deformation measurement technique is not difficult, which provides estimates of the 

displacement field by correlating the features in a pair of digital images of a specimen 

surface before and after deformation by a mathematically well-defined function. 

Digital image correlation has been used either as a noncontact strain gauge technique 

to measure the average strains of macroscopically uniform deformation [60,61], or as a 

whole-field deformation mapping tool to measure highly nonuniform deformation fields such 

as the ones surrounding a crack tip or perforation [62,63]. The versatility of this technique 

even includes velocity-field measurement of seeded fluid [64], characterization of soil 

surface layer cracking [65], detection of plastic deformation patterns in aluminum alloy [66], 

reliability of microelectronic packages[67] and compression strain measurement of 

aluminum alloy foams [68]. 

In this work, an in-house MATLAB program about digital image correlation method 

has been developed, which is based on subset methodology [69,70].  By this technique, we 

developed the average measurements that show the strain distribution inside of the plastic 

deformation zone and also individual measurements that show the strain value evolution 

inside of the single localization band.  
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Characterization of Plastic Flow in Ductile Metals by DIC 

Ductile metals such as copper and aluminum alloys as typical crystalline metals have 

been studied by indentation technique for many years. The underlying principle is to 

correlate the average contact pressure or “hardness” to the flow stress [71,72] and modulus 

[73] of the material. Despite the improved resolution and accuracy of the indentation 

technique [74], the details of elastic-plastic process zone remained to be explored via finite 

element analysis, employing phenomenological constitutive relations and hinges upon 

macroscopic matching of the force-depth indentation curves [75-77]. Limited details of the 

deformation field underneath the indenter have been reported via sectioning a macroscopic 

indentation [78,79] or indent a bonded interface [78], and then reveal the deformation zone 

by etching.  

In this work, we will apply the designed experimental protocol of wedge-like 

indentation and DIC technique to follow the evolution of the plastic deformation and flow 

field in ductile metals. Moreover, illuminate the details of plastic deformation mechanism by 

comparing with the numerical and analytical solutions. 

Study of Inhomogeneous Deformation of BMG by DIC 

Inhomogeneous deformation behavior of Vitreloy-1 bulk metallic glass has been 

experimentally studied by wedge-like cylindrical indentation and the process zone evolution 

has been analyzed by the DIC technique. According to the limitation of DIC technique, the 

strain levels of the shear bands in strain maps can be used for visualization purpose only. 

However, by measuring displacement jumps of two selected points on the shear bands, 
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Lagrangian strain components of the shear band also could be estimated over the entire shear 

band thickness at different stages of the whole loading cycle. The surrounding matrix strain 

levels are evaluated by bi-linear surface fitting local displacement distribution. The single 

shear band evolution has been studied in detail and at the mean time the experimental 

observation shows the nature of the shear band deformation. Finally, the detailed 

measurement of single shear band initiation is compared with a numerical model based on 

continuum mechanics.  

Fracture Testing of Ni-based BMG 

Recently, the Ni-based BMG and BMG composite containing brass fibers were 

fabricated by warm extrusion of gas atomized powders [80] and the plasticity of the BMG 

composites with different volume fractions and powder sizes were studied. The results 

showed that the BMG composite with 40% volume fraction of the brass phase showed 

highest ductility and the powder size of the brass is less than 63 µm. The mechanical 

properties of the BMG and BMG composite have been tested by uniaxial compression test 

along the extrusion direction and the stress-strain curve is shown in Fig.1.5, in which a 

monolithic Ni-base BMG by Cu-mold injection casting was compared [81]. As shown in the 

Fig.1.5, the injection casting BMG has the highest strength with 2% plastic strain to failure 

and the BMG by warm extrusion didn’t show any plastic strain before failure. But the BMG 

composite has improved ductility compared to the warm extrusion BMG. 

In this study, the evolution of the deformation and damage in the BMG/Brass 

composite system was studied with an experimental set up that enables in-situ observations 
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during the course of a wedge like cylindrical indentation. By quasi-static loading mode, the 

BMG/Brass composite was indented in two directions, parallel and normal to the extrusion 

direction, and more details will be presented in the following sections. 

 

Figure 1.5 Stress-strain curves for the injection cut BMG, warm extrusion BMG and BMG 

composite reinforced by 40% brass under uniaxial compression test. [81] 

 

1.4 STRUCTURE OF THE DISSERTATION  

 The goal of this dissertation is to understand BMG inhomogeneous deformation 

evolution through macroscopic and microscopic scale by experimental measurements and the 

numerical analysis. Therefore, as indicated in Section 1.3, digital image correlation (DIC) 

technique will be discussed in Chapter 2. The underlying principle of DIC technique will be 
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detailed explained and also calibration is conducted by analyzing highly localized 

deformation band. The displacement and strain level inside and outside of the localized 

deformation bands have been thoroughly examined. Based on the limitation of this technique, 

corrected evaluations of the band width and strain of the band have been indicated. To 

calibrate the validity of DIC technique in 2D indentation test, the deformation and flow 

characteristics of ductile metals have been studied in Chapter 3. The plastic deformation field 

of annealed polycrystalline copper and aluminum alloy are examined underneath cylindrical 

indenter. Also, FEM numerical model and Cavity Expansion model are discussed to evaluate 

the experimental measurements. Chapter 4 presents the inhomogeneous deformation of BMG 

under wedge-like cylindrical indentation test. The in-plane maximum shear strain is 

evaluated by DIC technique over the plastic deformation zone.  The evolutions of the shear 

strain inside and outside of the single shear band have been compared. Also the experimental 

measurement of the shear band initiation has been confirmed by the numerical model 

prediction based on continuum mechanics. By the same experimental setup, Ni-based BMG 

composite has been studied in Chapter 5. The macroscopic deformation has shown the 

improved the ductility of the BMG composite and the fracture toughness has been evaluated 

after examining the fracture toughening mechanism. For the anisotropic BMG composite, the 

fracture initiation has been discussed by two mechanisms, stress control and strain control. 

Finally, the appendix presents spectral analysis of 3D fracture surfaces for enhanced 

matching, which is used to determine the likelihood that certain broken pieces would/not 

match the broken piece found at crime scene. The work in the appendix is an independent 

project on inhomogeneous deformation of bulk metallic glass that is main research goal 

during the Ph.D study. 
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CHAPTER 2: MEASUREMENTS OF LOCALIZED DEFORMATION BY DIGITAL 

IMAGE CORRELATION: UNIAXIAL STRAIN 

2.1 ABSTRACT 

Highly localized deformation filed under uniaxial loading condition has been studied 

by digital image correlation (DIC) technique. Different length parameters used in DIC have 

been investigated to decide their contribution to the apparent width of the localization band 

estimated by DIC. The width of the localization band and the strain inside of the localization 

has been examined by the resultant displacement and strain field, respectively. An empirical 

equation about the estimation of the localization width is summarized by manually study of 

different situations and it has been successfully applied in the localization investigation of 

uniaxial deformed aluminum foam. 

2.2 INTRODUCTION 

Digital Image Correlation (DIC) technique has been developed for many years and it 

was first proposed in early 1980s to compute the surface strains and displacements [1]. It has 

been used either as a quantitative tool for average and homogeneous strains of 

macroscopically uniform deformation[2], or as a whole-field deformation mapping tool to 

measure highly localized deformation fields such as the ones surrounding a crack tip [3] and 

characterization of strain bifurcation in foams[4], doctor in details ahead of a particular shear 

band, detection of microscopic large strain by SEM topography image [6], plastic 

deformation patterns PLC bands[7] , compression strain measurement of aluminum alloy 

foams [8]. 
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As a deformation measurement technique, DIC provides estimation of the 

displacement field by correlating the features in a pair of digital images of a specimen 

surface before and after deformation by a mathematically well-defined function. DIC 

technique has different correlation algorithms, such as estimating discrete displacements data 

by local optimal match of intensity pattern in subsets (Subset method) [9]  and obtaining 

continuous displacement field function by full-field optimal match of the intensity pattern 

(Continuous method) [10]; different gray value interpolation schemes, such as most 

commonly used polynomial or B-spline for 2D surface [11] and tricubic interpolator based 

on 1D Hermitian cardinal basis functions for 3D volume [12]. The continuous method 

normally predicts more accurate displacements and displacement gradients than subsets 

method in the deformation field without localization [10], while the disadvantage in the 

localized deformation filed is that the localization would be smoothed out, especially in the 

discontinuous deformation field. Recently, for single shear band-like localization, an 

extended DIC approach has been introduced to partition the field into different parts and 

estimate the discontinuity [5]. However, in the highly localized heterogeneous deformation 

field, there would be multiple localizations involved with each other, such as bulk metallic 

glass under indentation [13], and the localization domain could be wider than a single line. 

Therefore, understanding the resolution and limitation for the highly localized deformation 

by DIC technique is critical to adjudge the width and strain level inside of the localization 

sites. 

In this paper, a DIC code has been developed based on subset method [14] [15] and 

the localized deformation filed has been explored by this technique. In the post DIC 
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processing, the resolution of displacement and strain has been studied and the dependence of 

several length parameters has been investigated. At the end of the work, the strain analysis of 

localization in the compression of aluminum alloy foam is cited as an example. 

2.3 IMPLEMENTATION PLAN 

Localization creation 

One image with the dimension of 200pixel×1200pixel having a well-patterned surface 

is chosen to generate the artificial localization bands. As shown in Fig.2.1 (a), the positions 

of the generated localization bands are schematically shown by the black dash lines in the 

strip of the image. The width of the localization bands, L0 is from 2pixels to 100 pixels with 

respect to the strain component εxx range from 50% to 1% and the image is stretched 

uniformly inside of the localization bands. The spacing between any two localization bands is 

large enough, so that there is no neighbor band influence in the DIC analysis of the 

localizations. 
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window is given at every pixel; however, to obtain sub-pixel accuracy, the estimation of the 

value and its derivatives between pixels requires an interpolation scheme. Different 

interpolation schemes have been tried such as bi-linear, bi-cubic, high order polynomials and 

B-spline method. Based on the accuracy and systematic errors analysis [11] (Schreier et al, 

2000), B-spline interpolation method is utilized in this study. Since the interpolation is only 

computed once in the deformed configuration, sub-window is centered in a 20% larger 

interpolation window leaving a buffer of several pixels at the edge to allow the sub-window 

movement during the local matching.  The acquired nodal displacements from both coarse 

and fine search represent the average displacement of each sub-window.  

After fine search, some post DIC processing steps are required to convert the 

displacement maps into strain maps. The spatial displacement gradients are evaluated relative 

to the undeformed configuration by spatial derivative a polynomial fit of the nodal 

displacement vectors. The gradient tensor F is obtained by: 

∇F = I + u                                                                                                (1) 

where ׏ indicates the spatial gradient. The components of the Lagrangian strain tensor *E  are 

evaluated over the undeformed configuration from: 

( )* T1E = F F - I
2                                                                                        (2)

 

The deformation is characterized by the effective strain map, which is defined as the 

in-plane maximum shear strains, εeff: 
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( )2 2
22 11 4eff xx yy xyε ε ε ε ε ε= - = - +

                                                          (3)
 

2.4 LOCALIZATION ANALYSIS 

Band Width Estimation Based on Displacement 

In the process of subset method, the pair of images is decomposed into a sequence of 

sub-windows and the dimension is determined by several factors, like intensity distribution, 

intensity pattern dimension, and average grain size, etc. The size of square correlation 

window Lb, spacing between two continuous sub-windows Lg and the strain gauge length Ls 

are shown in Fig.2.1 (b). In the course of the fine search, the average displacements of the 

sub-windows are determined by the local optimal intensity match inside of the correlation 

window, which represents the center nodal deformation of the sub-window. Therefore, if the 

correlation window contains one or partial of the localization band, the displacement 

determination in fine search step could be biased. In other words, the displacement starts to 

show the localization before the center of the sub-window moves to the center of the 

localization. In that case, the size of the correlation window Lb should be counted into the 

localization band width calculation. Another important parameter in the subset method is the 

spacing between the centers of two sub-windows, Lg, which determines how many sub-

windows within the resultant localization bands.  

 Based on previous discussion, it shows that the length parameters in the DIC process 

are critical for determination of the resultant displacement and strain level inside of the 

localization band. To explore the dependence of these parameters, different cases have been 
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studied as shown in Fig.2.2. Firstly, for the DIC displacement results, spacing between two 

sub-window Lg and size of correlation window Lb are constant with the value of 5 pixels and 

16 pixels, respectively. Fig.2.2 (a) has shown the DIC displacement results of artificial 

localization bands with different width of 3, 7, 20 and 40 pixels, and the results shows that if 

Lg and Lb are constant, the wider artificial localization the better estimation of the apparent 

band width Lapp from DIC method.  For constant artificial band width L0 of 20 pixels and 

constant Lg of 5 pixels, Fig.2.2 (b) shows the DIC displacements results with different 

dimension of correlation windows Lb ranging from 10 pixels to 18 pixels. The apparent band 

width Lapp increases with the size of the correlation window Lb, which results from the fact 

that the local match could be affected in the fine search because of the larger size of Lb when 

the center of the sub-window is far from the center of the localization. In Fig.2.2 (c), the 

artificial band width L0 is 20 pixels and Lb is 16 pixels, while the spacing between tow sub-

windows is changing from 3 pixels to 10 pixels. The apparent localization band width in the 

displacement results shows the trend that it increases with the spacing Lg. According to the 

above DIC displacement results, to estimate the localization bands is complicated since there 

are three length parameters involved with different contributions.  

Summarizing the observation of all results in Fig.2.2, one important phenomenon in 

the apparent band of the DIC displacement is that the band estimation is always integer 

number times of the Lg value and the DIC method overestimates the band width. Therefore, 

in order to organize the dependent relation, all of the length parameters are normalized by the 

spacing between two sub-windows Lg. There are four Lg length scales have been investigated 

in this study, those are 3, 5, 7 and 10 pixels. In each case, a range of artificial band width L0 
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of 2, 3, 5, 7, 10, 20, and 40 pixels have been analyzed by DIC technique with different 

correlation window sizes of 10, 14, 16 and 18 pixels. The size of the correlation window is 

dependent on the pattern size and gray intensity distribution. The variations of the normalized 

apparent localization bands and normalized artificial band width for all of four cases are 

plotted in Fig.2.3, which are estimated based on DIC displacements results. According to the 

relations, one equation could summarize the relation between normalized apparent band 

width and normalized artificial band width, which is 

( ) ( )

0

0

/ ( ) /                                              (4.a)

or,

/ , /                                  (4.b)

app g b g

g app b app b g g

L L roundup L L L

L L L L L L L L

⎡ ⎤= +⎣ ⎦

⎡ ⎤= − − −⎣ ⎦

 

The Eq.1.a has been plotted by dash lines in the Fig.2. 3 and it shows that most of the 

situations follow the relation except some special cases, such as the apparent band width is 

smaller than the equation prediction one Lg spacing. Since the equation utilizes the function 

of roundup that would overestimate the band width, there are two limited values for the 

estimation of exact band width and the resolution is based on the Lg spacing. And most of the 

exact solutions of the band width are fallen into the region defined by upper and lower bound 

through Eq.4.b.  
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Figure 2.2 The measurements of the localization band width by DIC technique with circle symbols and the exact solution of the 

band width by solid dot line. 
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Figure 2.3 The variations of the normalized apparent localization bands and normalized artificial band width for different Lg 

values. The empirical equation is shown in (a), and the dash lines are followed this equation.  
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To explore the improvement of the evaluation of the band width by correlation 

equation, the average strain inside of the localization bands has been defined by: 

0
avg

u
L

ε Δ
=                                                                                      (5) 

where, uΔ is the displacement difference across the localization band and L0 is the band 

width which could be the exact width, the apparent width, or the one after correction by Eq.1. 

The average strain levels of the artificial localization bands are plotted with dash line in 

Fig.2.4 for all of the parameter combination situations discussed previously. The unfilled 

symbols represent the average strain levels before correction, which is obtained directly from 

the apparent band width of DIC displacement results; While, the filled symbols stand for the 

average strain level after correction that are calculated with the upper bound of Eq.1.b. 

According to the plots, there are more improvements in the average strain after correction if 

the grid spacing Lg is small and it also shows that the spacing Lg determines the resolution of 

the displacement and the average strain level inside of the localization band. However, such 

improvements are not very obvious by increasing the localization band width L0, since the 

DIC displacement results could have better estimation of the wider localization bands by the 

observation in Fig.2.2.  
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Figure 2.4 The average strain values based on the apparent band width (unfilled symbols) are compared with the ones estimated 

from the empirical equation (filled symbols) and the later ones are more closed to the actual strain level. 
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Band Width Estimation Based on Strain 

In the post DIC process, the strain gauge length Ls as one more factor will be added 

into the resultant localization band width in the strain map and different local displacement 

fit within strain gauge length will result into different magnitude of the strain inside of the 

localization. In the evaluation the displacement gradients, there always is a tradeoff between 

closeness of fit and smoothness of fit, which has obvious effect in the case of highly 

localized deformation filed. For the sake of proper filtering the noise in the discrete 

displacement data, several smoothing methods have been discussed [7]; while such routines 

could dilute the localization when the width of the localization bands is thinner than the sub-

window size, in which the relation among strain gauge length Ls, dimension of correlation 

window Lb, grid spacing and localization width Lg plays an important role to achieve reliable 

displacement gradients.        

 To adjudge the strain gauge length Ls, Fig.2.5 shows effective strain plots by 

biquadratic polynomial fit with different Ls value but constant L0, Lb and Lg. The results 

indicate that the apparent band width in strain plot increases with the strain gauge length Ls 

and apparent maximums strain level decreases with the gauge length. From the DIC strain 

maps, the apparent band width also has been studied. Since the post DIC process is based on 

the results of the fine search, the bias of the band width from the DIC displacement results 

are added into the one from DIC strain maps. Therefore, in this step, we need to investigate 

the contribution of the strain gauge length by understanding the apparent band width of DIC 

displacement result. There are two cases: (1) Ls/Lg =4, and Lg spacing is 3 pixels with 

correlation window size from 10 pixels to 18 pixels; (2) Ls/Lg =2and Lg is 7 pixels with the 
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same rang of correlation window size.  The normalized apparent band width relation between 

the one estimated from the DIC displacement and the one from strain indicates that there is a 

constant difference between these two method estimations that is equal to the value of Ls/Lg. 

The apparent band width from the strain result could be expressed by,   

0/ ( ) / /app g b g s gL L roundup L L L L L⎡ ⎤= + +⎣ ⎦                                             (6) 

          To summarize the above observation of the DIC technique application in the 

case of localization, the apparent band width from both displacement and strain results 

overestimates the exact value. It is a result from different parameters with different 

contribution involved in this technique. As what have been studied, the different parameters’ 

contribution in the band width evaluation is closely related to the band width, and the DIC 

technique could provide a better solution, if the localization band is wide enough. The range 

of exact band width could be predicted from the apparent band width of DIC method by an 

empirical equation. However, it is impossible to convert the apparent band width by DIC 

method into exact solution for the whole deformation field automatically, because of the 

complexity of the localization in the deformation zone. In the post DIC process, the strain 

map is obtained by proper fitting the discrete displacement data over a certain gauge length 

Ls. The apparent band width of strain map is based on the one of DIC displacement 

evaluation and the critical parameter to determine the resolution is the grid spacing Lg, 

especially for the thin localization band situation. Therefore, to study the localization band 

width and the average strain level within a band, the displacement result of DIC technique is 

very important in the evaluation. 
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Figure 2.5 The variation of effective strain with increasing strain gauge length Ls.  
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Surface images were recorded by a commercial video camera with a CCD array of 

1024×1528 pixels. A wide aperture lens (F1.4) with extended depth of field was used with 

the camera. Two fiber optic light sources were used to provide oblique white light 

illumination and shadow reduction. The deformation process of the foam is recorded by a 

sequence of images with resolution of 60μm/pixel. The captured images are analyzed by the 

DIC subset method described in previous sections. The average size of the cellular is around 

3 ~4mm and the material exhibits non-uniform, heterogeneous deformation during the 

compression test.  

 As shown in the Fig.2.7, the stress has a sudden drop with incremental strain at the 

stage A-B following the nominal plateau stress, and both the stress/strain relation and the 

corresponding effective strain map (Fig.2.8.a) have indicated that highly localized 

deformation occurred at this stage. The details of such phenomena and deformation 

mechanism are given elsewhere [8]. The stage A-B has been marked in Fig.2.7 by two 

arrows and the effective strain map is obtained by analyzing the images at stage A and B. 

Based on the gray intensity distribution and the cellular size, the sequence parameters in DIC 

technique are chosen as: Lg=10pixels, Lb=16pixles, Ls=40pixles. In the post DIC process, the 

biquadratic polynomial is utilized to fit the discrete displacement fields over the strain gauge 

length. As shown in the Fig.2.8.a, most of the high strain domains are located on the left side 

of the image, which means the localizations. One part of the localization region has been 

marked in the Fig.2.8.a with a rectangle, and the relative partial images of these two stages 

are shown in Fig.2.8.b and c, which are larger than the domain marked in Fig.2.8.a. By 

observing these two pieces of images and the effective strain map, the localization occurs as 
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the cavities on the left side collapse during the deformation. Therefore, one of the cavities 

has been selected to study, which is shown in Fig.2.9. This part of the image is the 

localization region marked in Fig.2.8.a, corresponding to which the partial images of stage A 

is shown in Fig.2.9.a and the one of stage B is shown in Fig.2.9.b. The coordinates in X and 

Y directions are used to oriented the domain in the effective strain map Fig.2.8.a. As shown 

in the images, the contours of the cavity and the surrounding characters are plotted for both 

stage A and B. To confirm that the localization occurs at the cavity collapse, Fig.2.9.c shows 

the contour of stage B is on the top of stage A image and the characters are aligned on the 

right side of the cavity; while, the Fig.2.9.d shows contour alignment on the other side of the 

cavity. 

According to these two character alignments, it indicates that the localization is 

because of the deformation of the cavity. The contours of the cavity in stage A and B are plot 

together and shown in Fig.2.9.e, in which the background grid spacing represents the pixel 

unit. There is a rectangular window marked in the Fig.2.9 and the height of this window is 

one correlation window height Lb and the width of the window is the apparent localization 

width Lapp by DIC displacement result, which is along the sequence sub-windows in this row. 

Based on the contour in Fig.2.9.e, the cavity inside of the marked window has around 20 

pixels difference between stage A and B. Therefore, we could assume the exact localization 

width L0 is 20pixels. The DIC displacement components along this row of sub-windows have 

been plotted in Fig.2.10.a and b, in which the X coordinates same as the one in Fig.2.8.a and 

Fig.2.9, are used to track the site and width of the apparent localization. The displacement 

results indicate that the band width is 4 Lg and the estimated lower and upper bound of the 

band width should be 14~24 pixels, which is the result from Eqn.1.b by plugging the other 
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parameters into the equation. This evaluation is much closed to the width observed from the 

images. The displacement jump across the localization is approximately 6.7 pixels and the 

average strain inside of the localization should be 33.5%, if we assume that parameter 

L0=20pixels and εxx is the dominant strain component inside of the localization. However, the 

effective strain of this region is shown in Fig.2.10.c with maximum strain level of 14% lower 

than the actual strain, and the apparent width of this localization band about 80 pixels, which 

follows the estimation of Eqn.6. 

                  

 

Figure 2.8 (a) incremental strain map of the loading stage A-B, at which highly localized 

deformation occurred. (b) and (c) are the image of the localization at stage A and B, which is 

marked in (a).  
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Figure 2.9 Partial image of highly deformed localization: (a) The partial image at stage A; (b) the partial image at stage B; (c) and 

(d) the contour of stage B is aligned with both sides of the localization at stage A. (e) Highly deformed cavity at stage A and B is 

plotted on top of each other; inside of the marked window, it shows that there around 20 pixels difference.  
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Figure 2.10 The displacement components along the row of sub-windows shown in Fig.9 are presented in (a) and (b). The 

effective strain and apparent band width is shown in (c), which follows the estimation of Eqn. 6.  
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Based on this case, it shows that the DIC displacement result is critical to evaluate the 

localization width and the resolution of this method depends on the grid spacing Lg. The 

apparent band width from the strain result is based on the strain gauge length and the 

evaluation from the displacement results. The strain level is determined by several factors, 

such as the strain gauge length, the fit function and the noise level. Usually, it is difficult to 

evaluate the apparent width of localization by DIC strain result, because the noise or the 

choice of the strain gauge length could introduce fluctuations in the strain plot, which could 

result into errors in the evaluation process.  

2.6 CONCLUSION 

The measurement of localized deformation by DIC subset method has been studied in 

this work. Based on the investigation of a sequence of localization bands with different 

artificial width, it indicates that DIC technique overestimates the width of the localization, 

which is the result from several length parameters used in this technique. By exploring the 

parameters’ contribution during the DIC process, an empirical equation has been summarized 

and the spacing between two continuous sub-windows Lg is very important to determine the 

resolution. The width and strain level within the localization are biased in the strain map 

obtained by post DIC process, in which the width evaluation has been effected by the strain 

gauge length and the strain level is much lower than the exact value. Also, the strain map just 

could qualitatively highlight the localization but over estimate the band width especially for 

the thin localization band. Generally, to understand the localization character by DIC 

technique, we have to focus on specific localization and analyze the DIC result manually to 

explore the corresponding properties.  
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CHAPTER 3: EXPERIMENTAL CHARACTERIZATION OF PLASTIC FLOW IN 

DUCTILE METALS BY WEDGE-LIKE INDENTATION 

3.1 ABSTRACT 

A wedge-like cylindrical indentation experiment is employed to study the 

deformation and flow characteristics in ductile metals. Two sets of materials, annealed 

polycrystalline copper with 17~37µm grain sizes, and aluminum 6061-T6 alloy are examined 

to represent a wide range of FCC metals with different hardening exponent, and flow stress. 

Digital image correlation technique is used to follow the evolution of the deformation and 

flow field underneath the indenter. The distribution of the effective strain in the plastic zone 

has unique correlation with the radial distance and the self-similarity manner has been 

observed. FEM numerical model and Cavity expansion model are discussed to evaluate the 

experimental estimation. 

3.2 INTRODUCTION 

The instrumented depth-sensing indentation technique has been used to probe the 

mechanical properties of bulk materials at the microscopic scale [1,2] or at the submicron 

scale [3,4] for many years. The underlying principle is to correlate the average contact 

pressure or “hardness” to the flow stress [2,5] and modulus [6]of the material. Despite the 

improved resolution and accuracy of the indentation technique [4], the details of elastic-

plastic process zone remained to be explored via finite element analysis, employing 

phenomenological constitutive relations and hinges upon macroscopic matching of the force-

depth indentation curves [7-9]. 
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Limited details of the deformation field underneath the indenter have been reported 

via sectioning a macroscopic indentation [10,11] or indent a bonded interface [11] then 

reveal the deformation zone by etching. The deformation field underneath spherical 

pyramidal indenter on annealed brass was shown to be radial and hemispherical [10]. Such 

deformation pattern is in agreement with the simplified Johnson cavity expansion model [5] 

for the indentation field, employing Hill’s solution [12].  Alternatively, the sectioned surface 

is probed by an array of micro- or nano-indentation to map the spatial distribution of the 

current level flow stress and the corresponding plastic strain (given that a correlation between 

the measured flow stress and the effective plastic strain is available). The iso-strain contours 

underneath the pyramidal indentations showed that the deformation zone has been elongated 

along the loading direction [13,14] and materials’ mechanical properties play different roles 

in the shape of the strain contours [14]. Additionally, using the orientation imaging method 

inside SEM on a sectioned surface of Vickers indentation on a single grain copper [15] 

showed that the evolution of crystal lattice rotation was not self similar, with the maximum 

lattice rotation occurring at the flanks of the indenter. 

However, none destruct measurement of the deformation filed underneath indenter 

has been reported. This work applies the recently developed experimental protocol [16,17] of 

wedge-like indentation and digital image correlation to record the evolution of the plastic 

deformation and study the flow field in ductile metals. First, details of the experimental setup 

and the test materials are given in section2. Summary of the analytical and numerical models 

is shown in section 3. Experimental observations compared with FEM simulation results are 
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indicated in section 4. Discussion section elaborates the details of the plastic flow and 

deformation mechanisms.  

3.3 EXPERIMENTS 

Material Models 

Two sets of FCC metals are utilized to represent a broad range of material properties 

including flow stress and hardening characteristics. The first set is a commercial aluminum 

alloy 6061-T6, having an average grain size of 85µm. The second set is oxygen free 

polycrystalline copper with 17 µm grain size. A beam type configuration is utilized with 

cross section of 3.3mm wide and 7.5mm deep in the indentation direction, and length of 

25mm. The Al6061 alloy specimen was tested in the as received condition. The copper 

specimens were tested in the as the received conditions (Cu-I) as well as after annealing to 

400 ⁰C (Cu-II) and 600 ⁰C (Cu-III) for 2 hrs to modulate the grain size and the hardening 

characteristics. Summary of the tensile and/or compressive test results are summarized in 

Table 1 for elastic modulus, yield stress, stain hardening exponent, and the average grain size 

for each treatment condition. 

The specimen front surface, normal to the indent plane is mechanically polished to 

0.5 µm finish. Light etching in 5% Nitric acid is used to reveal the surface grains and 

decorate the surface for the digital image correlation technique. The light etching has 

provided excellent random speckle pattern on the specimen surface.  

Experimental Setup 
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An Instron 8862 servoelectric loading frame is used to do the cylindrical indentation 

experiments, with loading rate of 1 µm/s. The loading fixture, shown in Fig.3.1 [17], ensures 

that the contact line between the indenter and specimen top surface is perpendicular to the 

front plane of the sample. A SiC wedge like cylindrical indenter with root radius, R= 0.8 mm 

is used in the experiment. A travelling microscope having 5x objective lens and a 

progressive-scan camera (SPOT Insight CCD array of 2048x2048) is utilized to image the 

surface evolution of the process zone underneath the indenter. The corresponding field of 

view is 2 mm×2 mm with 1 pixel/µm resolution. A combination of through the lens and 

external oblique unpolarized white light are used to illuminate the specimen surface. Images 

are collected every 0.5 s during the loading and unloading phase.    

 

Figure 3.1 Schematic of the loading fixture for cylindrical indentation test.   
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Digital Image Correlation Technique 

A Digital Image Correlation (DIC) technique, developed in house, is used to analyze 

the deformation field on the surface underneath the indenter. Pairs of images of the current 

deformed configuration and the original undeformed configuration are correlated together to 

find the nodal displacement over a uniform grid points. Each pair of images was divided into 

a set of 40-pixel square sub-windows, with a 10-pixel overlap. The developed technique has 

two step searches; (1) a coarse search is based on maximizing the intensity correlation 

coefficient between the sub-windows to within one pixel, and (2) a fine search routine, using 

expanded 2-D eignvalues of the local match, coupled with iterative Newton-Raphson method 

to achieve 0.01 pixel resolution. Details of the technique could be found elsewhere [18,19]. 

The acquired nodal displacement represents the average displacement of each sub-window. 

Spatial displacement gradients relative to the unreformed configurations are acquired from a 

bilinear fit of the nodal displacement over 5x5 local nodal grid, or the width of the 

correlation window to eliminate the high frequency digital noise, without obscuring any 

displacement localization. The selection of such local nodal grid defines the local strain gage 

length is about 40 µm, over which the strain is averaged. Therefore, while we acquired nodal 

displacement and strain values every 10�m, however each of these values represents an 

average over 40µm window.  The acquired displacement gradients are used to calculate the 

in-plane Lagrangian strain components at the nodal grid. 

3.4 ANALYTICAL AND NUMERICAL MODEL: 

A modified cavity expansion model has been developed [5] (Appendix 1) about the 

wedge indentation in an infinite elastic perfectly-plastic body, which is based on the von-
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Mises yield criterion. By considering both material parameters and the geometry of the 

indenter, it derived the relation that  
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where E is the Young’s modulus, Y is the uniaxial yield strength, p is the mean pressure in 

the core , c is the plastic zone size, a is the contact radius, β is the angle between the indenter 

flank and the surface, t is the thickness of the specimen and ν is the Poisson’s ratio. 

Based on the force equilibrium, the relation of the applied force and plastic zone size 

has been developed, in which the plastic zone is assumed to be semi cylindrical cap and 

boundary conditions has been substituted. More details are shown in the Appendix 2. 
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where F is the load level , c is the elastic-plastic boundary and t is the thickness of the 

specimen. 

A closed-form analytical solution for the elastic-plastic stress, strain, and 

displacement component of an internally pressurized open-ended thick-walled cylinder is 

developed [20] by utilizing Hencky’s deformation theory and von-Mises yield criterion. This 

analytical solution has following assumptions: (1) the material homogenous and 
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incompressible,(2) isotropic hardening, (3)small strain, (4) no body force acting, (5) loading 

proportionally without unloading, (6) elastic power-law plastic model of stress-strain relation, 

and (7) plastic zone is a cylinder. By setting stress components as basic unknowns and 

introducing a modified Nadai’s auxiliary-variable φ, at give pressure, the functional 

relationship between  φ  and radius r is established within the plastic zone. Additionally, 

based on the boundary conditions and the compatibility equation, the stress components are 

expressed as a function of φ . According to the general solution in the plastic domain, the 

stress components rε , θε and zε are proportional to 1
2
+

−
Nr , and 10 ≤≤ N . This relationship 

indicated that the strain distribution inside of the plastic zone is effected by the hardening 

exponent value N for the open-ended thick-walled cylinder, of which the stress-strain 

relation followed the elastic power-law plastic mode. 

There have been various finite element simulations exploring the plastic distribution 

associated with deformation mechanism [8] and the influence of the yield strength Y and 

hardening exponent n on the shape of the plastic strain contour [21]. In this study, we use 

Ramberg-Osgood constitutive relation to simulate the wedge-like cylindrical indentation 

experiment, which are used to examine the macroscopic response and the strain distribution 

in the plastic zone. Three-dimensional (3D) geometric models for all of the copper specimens 

in the experiments are established using the ABAQUS finite element package. The 

dimension of the sample is the same as the experimental samples and only one quarter of the 

sample was analyzed. The materials properties are input by the parameters which were listed 

in Table.1 and the analytical rigid indenter with frictionless contact are assumed to simplify 
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the contact analysis. 8-node linear hexahedral elements are used and mesh refinement is 

increased within the domain underneath indenter. 

 
Table 3.1 Relevant mechanical properties of the Al60601 alloy and three copper specimens, 

which were obtained from the uniaxial loading tests . 

3.5 EXPERIMENTAL AND NUMERICAL RESULTS 

Macroscopic Trends 

The measured load-indentation depth curves of the aluminum alloy and three copper 

samples with same indenter radius R of 0.8 mm are summarized in Fig.3.2, in which the 

elastic stiffness of the loading fixture has been removed. A full surface contact was 

established when the linear elastic deformation started, at which zero indentation depth of the 

load-indentation depth curves were set. The comparison of the experimentally measured 

macroscopic response with FEM results and analytical solution based on Johnson’s cavity 

expansion model are shown in Fig.3.2a and Fig.3.2b respectively, in which both of them 

match the experiment measurements well except the analytical solution underestimates the 

load levels with increment of the indentation depth. The load-indentation depth relation of 

the analytical solution is based on Eq.2, in which there is no strain hardening considered and 

incompressible material is assumed. 

E (Gpa) Y(Mpa) n dg (µm)

Al 6061 66 260 15 85

Cu I 121 180 10 17

Cu II 118 46 2.3 28

Cu III 112 40 1.9 37
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Figure 3.2 Experimental measurements of Force-indentation depth curves for Aluminum and three Copper samples under 

cylindrical indentation test with radius, R=0.8mm; (a) Comparison of the experimental and FEM numerical macroscopic responses 

for three different Copper specimens; (b) Comparison of the Johnson's analytical solution and the experimental measurements.   
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Effective Strain Evolution 

According to the images that have been taken during the course of the indentation 

experiment, the 2D in plane strain maps were plotted based on the DIC analysis. From the in-

plane strain components ( xyyyxx εεε ,, ), a measure of the effective strain can be obtained by:  

ijijeff εεε
3
2

=                                                                                                (4) 

The load-indentation depth curves of Cu I and Cu II are shown in Fig.3. 3a with three 

loading stages marked on each plot having similar indentation depths. Fig.3. 3b-3d and Fig.3. 

3e-3f show the evolution of the in-plane effective strain of Cu I and Cu II respectively at 

different stages. The blank domain in the effective strain maps of Cu I means that there are 

no analysis data in those regions, which could be caused by the out of focus of the image by 

large out of plane deformation underneath the indenter or dust on the camera.  As shown in 

Table.1, Cu I that was tested as received condition has higher yield strength and lower strain 

hardening capability compared with Cu II that was annealed under 400⁰C for 2 hours before 

indentation test. As can be seen in the effective strain maps, the total accumulated effective 

strain of Cu I around the indenter is much lower than the one of Cu II at given indentation 

depth.  

Although the macroscopic response and local strain levels are much different for 

these two copper samples, the shapes of these two sets of strain contours keep similar during 

the plastic deformation propagations, which look like a partial ellipse.  To explore more 

details of the shape of the plastic zone, the ratio of the height to width of the plastic zone at 
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different loading stages has been investigated for all of the indentation tests, including 

Al6061 and Cu I, II, III specimens. Because of the resolution of the DIC technique which is 

controlled by the noise introduced by the camera, illumination and vibration et al, we set 0.5% 

effective strain level as the elastic-plastic boundary of the deformed field. The height, h and 

the width, w of the plastic zone are defined in Fig.3.3e. The variation of the yield strength 

and the h/w aspect ratio is plotted in Fig.3.4a, which indicates that the ratios of the height to 

width of all of the copper specimens are around 1, except the one of Al6061 alloy is around 

0.8. The dependence of the plastic zone size and the load levels for different specimens is 

shown in Fig.3. 4b, in which the load per unit thickness is normalized by the uniaxial loading 

yield strength for each specimen and the plastic zone size is averaged from angle 0⁰ to 30⁰ as 

shown in Fig.3.3b. The linear relationship between the normalized load level and averaged 

plastic zone size is shown in the plot for each sample and the slop of the linear fit is around 

0.81.  
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Figure 3.3 Effective strain maps of three different load stages were plotted for Cu I and Cu II. (a). The three different load stages 

of Cu I and Cu II were marked on the experimental force-indentation depth curves respectively. (b)-(d) Effective strain maps of Cu 

I; (e)-(g) Effective strain maps of Cu II; 
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Figure 3.4 (a) The ratio of height to width of plastic zone for all of the specimens. (b) Dependence of the plastic zone size on the 

load per unit thickness which was normalized by the yield strength Y.   
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Radial Dependence of the Effective Strain 

Beside of the shape and plastic zone size, the dependence of the effective strain on the 

radial line is another interesting part in this work, which indicates the fact of strain decay 

underneath the indenter. About Cu I and Cu II, as defined in Fig.3.3a, 3b, the radial lines 

were extracted from the effective strain maps in different angle θ directions at different load 

stages. The effective strain of Cu I and II for 3 different loading stages marked in Fig.3. 3a 

are plotted as a function of normalized radial distance r/c in Fig.3.5a and Fig.3.5c 

respectively, in which the radial lines are along the direction of 0⁰ angles. The normalization 

parameter c is the elastic-plastic boundary at every loading stage. As shown, each of the 

specimens has their own unique correlations between the effective strain and normalized 

radial distance at different loading stages, which indicates the self-similar property of the 

deformation field in the cylindrical indentation. At given indentation depth or loading stage, 

the normalized radial plots of the effective strain of these two copper along different 

directions are shown in Fig.3.5b and Fig.3.5d, in which the correlations between the effective 

strain and normalized radial distance keep same as shown in Fig.3.5a and Fig.3.5b. Therefore, 

it reveals that for each specimen there is a unique correlation about the effective strain and 

normalized radial distance that can describe the strain distribution in the deformation filed of 

cylindrical indentation, based on the experimental results shown n Fig.3. 5.  

To obtain the expression of the effective strain as a function of normalized radial 

distance in the plastic domain, the experimental measurements shown in Fig.3.5a and 

Fig.3.5c have been averaged along the direction of 0⁰ angles at different loading stages. The 

dash line plots in Fig.3.6 a, b show the power fit expression of the experimental results 
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within plastic zone (r/c<1) about Cu I and Cu II, in which the effective strain of Cu I has the 

proportional relationship  to the normalized radial distance with power exponent -1.55 and 

the one of Cu II is -1.302. According to the FEM simulation results, the effective strain of Cu 

I and II along 0⁰ angle directions at different loading stages are plotted to the normalized 

radial distance in Fig.3.6a and Fig.3.6b with different symbols, which indicates the same self-

similarity as that shown in the experimental results. The effective strain power fit for the 

FEM radial line plots of Cu I within the plastic zone has the power exponent -1.68 and Cu II 

has the power exponent of -1.474, both of which are higher than the corresponding 

experimental measurements. As discussed in Section 3.3, an exact solution for the open-

ended cylinder tube analogous to the cylindrical indentation has been developed, in which the 

material is assumed to be elastic power-plastic and incompressible. This analytical solution 

states that the effective strain in the plastic zone has the proportional relation to the radial 

distance with power exponent,
1

2
+

−
N

 where N is the strain hardening exponent and

10 ≤≤ N . Based on this relation, the analytical solutions by substituting the corresponding N 

value for each specimen are shown in Fig.3.6a and Fig.3.6b with solid lines for Cu I and II. 

Compared with the numerical and analytical solution, the experimental measurements have 

lower accumulated effective strain at given radial distance in the plastic zone , but similar 

effective strain levels as those of FEM simulation results outside of the plastic zone, where 

r/c≥ 1. 

 

 



 

 

59

 

 

 

 

(a)

r/c

ε e
ff

0 0.5 1 1.5 20

0.005

0.01

0.015

0.02

0.025

Cu I-stage1
Cu I-stage2
Cu I-stage3

Cu I

(b)

r/c

ε e
ff

0 0.5 1 1.5 20

0.005

0.01

0.015

0.02

0.025
0degree
15degree
30degree
45degree

Cu I



 

 

60

 

Figure 3.5 (a),(c) Normalized radial line plots along 0⁰ angle of the effective strain of Cu I and Cu II for different stages (1-3) 

marked in Fig3. a; (b),(d) Normalized radial line plots of effective strain along 0⁰ , 15⁰ , 30⁰ and 45⁰ degrees of Cu I and Cu II at 

their own stage 2.   
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Figure 3.6 Comparison of the radial line plots along 0⁰ angle of Cu I (a) and Cu II (b) effective strain for the average experiment 

measurements, FEM simulation results and the Analytical solution [20]. The power fit exponents were marked for each curve.
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Circumferential Dependence of the Effective Strain 

The distribution of the effective strain closed to the indenter has been revealed from 

the circumferential plots with different radii. The center of the circumferential line is located 

at the indenter tip and the variation of in-plane total strain vectors are plotted on the reduced 

Mohr-plane ( xyε , )( yyxx εε − /2) at different loading stages, which is a function of angular 

position measured from θ=-90⁰ to 90⁰ as shown in Fig.3.3b. The distributions of the strain 

vectors predicted by the experimental measurements are plotted in Fig.3.7, which is about Cu 

I and Cu II at 500,400,300=r and 700 µm, for the different loading levels. Since the 

circumferential lines are extracted at different radii with various strain state, the distribution 

of the in-plane total strain vectors will in essence show the shape of the potential function, 

which have the same shape as a yield function, if associated flow is assumed. For a 

homogeneous material with a smooth yield surface, a smooth trajectory of the total strain 

vectors is expected, as the FEM numerical simulation results shown in Fig.3.7. Although the 

general shape of the trajectories from the experimental measurement can be identified, it still 

shows that there are some overlaps and clusters along the trajectory of the strain vectors on 

the reduced Mohr-plane. Such inhomogeneous localization and fluctuations in the 

distribution of the in-plane strain vectors could be explained by the microstructure effect, so 

called grain-noise effect [22]. Comparison of the two materials, it shows that Cu I with 

smaller grain size and higher yield strength has smoother trajectory than that of Cu II, on 

which there are more irregular clusters.  

In spite of the fluctuations on the strain vectors’ distribution, the experimental 

measurements still can present a reasonable estimation, in which the strain vectors are in the 
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negative direction of )( yyxx εε − /2 axis within the angular position at the flank of the indent 

and the components of xyε  are around zero at the field just below the indenter (θ=0⁰). As the 

radius of the circumferential line is small that the field is near the indenter tip, the magnitude 

of the strain vectors has much higher value of the FEM simulation results than that of the 

experimental estimations as shown in Fig.3.7a and Fig.3.7d. While as the radius increases, 

such as shown in Fig.3.7c, r=700µm, for the lower loading stage (stage1 for Cu I), the FEM 

results and the experimental measurements become closed to each other. This observation 

agrees with the result indicated in the radial line plot (Fig.3.6) that the strain level from the 

experimental measurement is lower than that of the FEM results inside of the plastic zone, 

but coincides with each other in the elastic region. The trajectories plotted in the Fig.3.7 are 

self-similar at different loading stages, which also confirm the conclusion from the radial 

dependence of the effective strain in Section of radial dependence of the effective strain.  

3.6 DISCUSSION 

By utilizing the new experimental setup and the DIC technique, a clear effective 

strain map has been developed for the deformation field underneath the cylindrical indenter. 

Based on the contours of the effective strain at different loading stages, it shows that the 

shape of the deformation zone is not a semi-circle as assumed in the Cavity Expansion model, 

but a partial ellipse with the h/w aspect ratio around 1. Similar observations have been 

reported in the Vickers indentation tests [13,14], however, no significant effect of the yield 

strength and strain hardening exponent on the shape of the plastic zone, which look like 

similar and have almost same aspect ratio for all of the specimens tested in this study. 

According to the investigation of the evolution of the effective strain contour, radial 
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dependence of the effective strain and variation of the in-plane strain vectors along the 

circumferential direction at different loading stages, the deformation field underneath the 

cylindrical indenter has the self-similar manner and the flow characterizations keep the same 

correlation relation at different angular positions.  

More details about the plastic zone size have been explored in this study that as 

indicated from Fig.3.4b, the plastic zone size has a linear relationship to the normalized 

linear loading levels for all of the specimens with the slop of 0.81. As mentioned in Section 

3.2 the simplified analytical solution, Eq.3 also shows the linear relation between the loading 

level and plastic zone size, in which the slop of the linear relation is 3/2 and higher than 

our experimental observation. This simplified model has been established on the cavity 

expansion theory by assuming the plastic zone is semi-circle and keep this shape through the 

thickness of the half-space, however, in reality, the plastic zone size observed in our 

experiment is located on the front surface of the sample that could amplify the plastic zone 

size, and the shape of the plastic zone is also different so that the expression of the elastic-

plastic boundary surface is not the same one as described in Eq.3. Generally, both of the 

experimental and the simplified cavity model reveal that the applied load governs the 

equilibrium at the elastic-plastic boundary and the size of the plastic zone. Similar 

conclusions were reported for the spherical indentation test [7].  Furthermore, another 

common observation from the radial dependence of the effective strain and in-plane total 

strain vectors’ trajectory on reduced Mohr-plane shows that the experimental accumulated 

strain level coincides with the FEM numerical solution in the elastic domain. Fig.3.8 plots 

the experimental and FEM effective strain variation with the radial distance normalized by 
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contact radius a of Cu I and II at give indentation depth δ, at which the ratio of δ to indenter 

radius R is around 0.067. According to previous observation, as shown in Fig.3.8, both of the 

plots indicate that the experimental effective strain starts to agree with FEM solution at the 

ratio, r/a =5~6, which indicates that the ratio of c/a is around 5~6 that c is the plastic zone 

size. This result also could be confirmed from the analytical models. In Johnson’s cavity 

expansion model, the c/a value has been suggested to be a constant at any load levels with a 

cylindrical indentation. If the fully plastic state is assumed, by substituting 5.0=ν  and 

100/tan =YE β  into Eq.1 and Eq. 2, which is the limitation for 2D indentation to change 

the mode of deformation [5], it gives the relations that 

6/ ≈ac                                                                                                           (5) 

Yp 7.2≈                                                                                                         (6) 

Alternately , the normalized line load is linearly proportional to the plastic zone size 

as shown in Eq.3, and the c/a value based on the force equilibrium relation also could be 

estimated  by substituting Eq. 6 into Eq.3 that 

7.4/ ≈ac                                                                                                        (7) 

Therefore, compared with experimental measurement and analytical models, the 

plastic zone size of our experimental prediction agrees well with the analytical solution, 

which also has been experimentally examined for 3D micro conical indentation test [23]. 
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Figure 3.7 In-plane total strain vectors are plotted on reduced Mohr-plane as a function of the angular position at different loading 

stages. The trajectories of the strain vectors for Cu I and II are shown in (a)-(d), and (g) and (h) are about the details about the 

regular clusters along the trajectories with angular position marked. A slip-line field solution underneath the cylindrical indenter is 

plotted in (i).  
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Figure 3.8 Comparison of the effective strain variation along the normalized radial distance for  Cu I and Cu II with experimental 

measurements and FEM simulation results, where a is the contact radius. 
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As shown in Fig.3.6, we obtained the power fit expression to uniquely describe the 

effective strain distribution as a function of the normalized radial distance. Compared with 

the power exponents of the FEM simulation results and the analytical solution, our 

experimental estimation shows the lowest accumulated effective strain within the plastic 

zone, which means that there is an extra strain hardening mechanism also effect the strain 

distribution. The overlaps and clusters along the trajectory of the in-plane total strain vectors 

on the reduced Mohr-plane have already shown the non-homogenous yield surface of the 

plastic deformation. In the indentation test, for the polycrystalline metals or multi-phases 

alloys, the grains on the flank of the indent undergo large rotation because of the plastic 

deformation underneath indenter, which has been studied by electron backscattering 

diffraction scans [15]. Because of the non-homogenous plastic deformation and the large 

rotation, the gradient of plastic deformation has been built up in the plastic zone which 

requires introducing geometrically-necessary dislocations that provide for compatible 

deformation [24]. Such constraint plastic deformation could be the reason that introduces 

extra hardening capability of the materials underneath the indenter.  

The trajectories of in-plane total strain vectors on reduced Mohr-plane show the 

plastic flow characterization closed the indenter tip, and Fig.3.7 shows that there are some 

irregular clusters along the trajectories. However, for Cu I at radius of 500µm and Cu II at 

radius of 700µm, the overlaps and clusters of the strain vectors on the reduced Mohr-plane 

seems have some regularities that they are symmetric relative to the angular position θ=0⁰ 

and the xyε components of a cluster of strain vectors around the position of θ=0⁰ are around 

zero. The characters of the slip-line field solution of a cylindrical indentation have been 
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discussed [8], which are very similar to the one of the blunt notch-tip field [25,26]. Fig.3.7i 

shows the different sectors of the slip-line field underneath the cylindrical indenter, in which 

sector IV is the logarithmic sector, sector I, III are simple stress sectors and sector II is a 

composite one that contains a transition from simple stress to logarithmic stress sector. For 

the incompressible material, the largest extent of the sector IV is located directly below the 

indenter tip at [27] 

      βRe=r                                                                                                           (10) 

where r is the radial distance from the indenter tip, R is the radius of the indenter and β is 

same as defined in Eq. 2. Therefore, the extent of the sector IV depends on the indentation 

depth δ, that uniquely describe the angle β with a constant indenter radius R. Although our 

experimental materials are not perfect plastic material, the slip-line field solution still makes 

sense in the plastic zone closed to the indenter tip. Since the sector III is a simple stress 

sector without shear stress component xyε , the circumferential line could pass through sector 

III if the radius is large enough, which means the all strain vectors in sector III should have 

zero xyε  strain component same as what we observed in Fig.3.7g and Fig.3.7h. The rest of 

the symmetric clusters could be the strain vectors that near the boundary of different sectors 

that stress discontinuity exist in the slip-line field.  

3.7 CONCLUSION 

Experimental study of the plastic flow characterization with ductile metals has been 

developed under wedge-like cylindrical indentation. By digital image correlation technique, 
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the strain maps underneath the indenter have been plotted. The experimental observation of 

the shape of the plastic zone has confirmed as the one reported in the previous findings about 

Vickers indentation tests and a unique correlation of the strain distribution has been 

investigated along radial line with different angular positions. Self-similar manner has been 

observed in both of the radial dependence of the effective strain and the in-plane total strain 

vectors on reduced Mohr-plane at different loading stages. FEM numerical solution and 

analytical solution have been explored to evaluate the experimental measurements.  

3.8 APPENDIX.1 CAVITY EXPANSION MODEL 

The well-known theoretical solution of plastic-elastic expansion of a cylindrical tube 

was primarily based on the Tresca yield criterion and elastic-perfectly plastic model [12], 

which assumed that the plastic boundary in homogenous material was a spherical surface.  

For most of the ductile metals which yield von-Mises criterion, the approximation solution 

was obtained by replacing the yield strength Y in Tresca criterion with 3/2Y , which was 

3/2Yr =−σσθ                                                                                            A.1  

Although the problem about open-end cylindrical tube, analogous to our experimental 

specimen, was more difficult than the closed one, this approximation solution still suits for 

the case of expansion of a cylindrical cavity in an infinite medium based on an empirically 

determined yield criterion (British design practice, dv.p.21).  

By extending Hill’s cavity expansion model, a simplified theoretical model was 

developed by [5], which was about the wedge indentation in an infinite elastic perfectly-
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plastic body. In this model, a semi-cylindrical core of radius a replaced the cavity and a 

hydrostatic pressure p  was assumed inside of the core. Therefore, based on the stresses 

components given by Hill [12] (1950, p110) and Johnson’s model, the approximation 

solution for von-Mises materials in infinite elastic perfectly-plastic medium can be written in 

the following:  
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where a is the radius of the core, c is the plastic-elastic boundary, and Y  is the yield strength 

under uniaxial loading. Subsequently, based on the radial displacements found by Hill (1950, 

p.126) [12] and the condition of conservation of volume in the core, Johnson’s model 

considered both of the material parameters and the geometry of the indenter and obtained:  

)21(3)/)(45(tan32 2 ννβ
π

−−−= ac
Y

E                                                         A.4 

For an incompressible material 5.0=ν , they yield the expression: 
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where E is the Young’s modulus, p is the mean pressure in the core , β is the angle between 

the indenter flank and the surface and ν is the Poisson’s ratio. 

 

3.9 APPENDIX.2 SIMPLIFIED ANALYTICAL SOLUTION 

A simple interpretation of Johnson’s spherical cavity model was developed [12], 

which demonstrated the relation of the plastic zone size and the load level and was verified 

by both micro and nano indentation tests [7,23]. According to this model, we also developed 

a simplified version of Johnson’s model for the cylindrical indentation. In Johnson’s model 

where there was only hydrostatic pressure inside of the core region, it was assumed that only 

the radial stresses supported the load. Additionally, for the cylindrical indentation, zσ was 

assumed to be the intermediate principle stress and there was no shear stress along the z

direction on the yield surface, which is semi-cylindrical. Therefore, the stress components 

shown in Eq.A.2 satisfy the yield criterion described in Eq. A.1 inside of the elastic-plastic 

region and boundary condition yields  

Ycc rr 3
1)()( −== +− σσ .                                                                              A.7 
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The area of the semi-cylindrical cap is ∫ ⋅⋅
2/

0
2

π
θdct , where t is the thickness of the 

specimen.  Given this, the equilibrium relation between the radial forces, )(cosθσ r acting on 

the cylindrical surface and applied load level can be established and the force balance is  

rr tcdctF σθθσ
π

⋅⋅⋅=⋅⋅⋅⋅= ∫ 2cos2
2/

0
                                                        A.8 

where F is the load level , c is the elastic-plastic boundary and t is the thickness of the 

specimen. By substituting the boundary condition Eq. A.7 into Eq. A.8, 

3
22 cYttcF r =⋅⋅⋅= σ                                                                                      A.9 

which indicates the linear relation between the applied force and plastic zone size of the 

cylindrical indentation. 

3.10 REFERENCE 

[1] D.S. Dugdale, “Experiments with pyramidal indenters--Part I,” Journal of the 

Mechanics and Physics of Solids,  vol. 3, Apr. 1955, pp. 197-205. 

[2] D. Tabor, “Hardness and strength of metals,” Institute of Metals, vol. 79, 1951, pp. 1-18. 

[3] M. Doerner and W. Nix, “A method for interpreting the data from depth-sensing 

indentation instruments,” Journal of Materials Research,  vol. 1, 1986, p. 601. 

[4] W. Oliver and G. Pharr, “Improved technique for determining hardness and elastic 

modulus using load and displacement sensing indentation experiments,” Journal of 

Materials Research,  vol. 7, 1992, pp. 1564-1580. 



75 
 

 

[5] K.L. Johnson, “Correlation of indentation experiments,” J MECHANICS PHYSICS 

SOLIDS,  vol. 18, 1970, pp. 115–126. 

[6] I. Sneddon, “Relation between load and penetration in axisymmetric Boussinesq 

problem for punch of arbitrary profile,” International Journal of Engineering Science,  

vol. 3, 1965, pp. 47-57. 

[7] D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, and W. 

Gerberich, “Yield strength predictions from the plastic zone around nanocontacts,” Acta 

Materialia,  vol. 47, 1998, pp. 333-343. 

[8] A. Bhattacharya and W. Nix, “Finite element analysis of cone indentation,” 

International Journal of Solids and Structures,  vol. 27, 1991, pp. 1047-1058. 

[9] Y. Wei and J.W. Hutchinson, “Hardness trends in micron scale indentation,” Journal of 

the Mechanics and Physics of Solids,v51,n11-12 ,2003, pp. 2037-2056. 

[10] L. Samuels and T. Mulhearn, “An experimental investigation of the deformed zone 

associated with indentation hardness impressions,” Journal of the Mechanics and 

Physics of Solids,  vol. 5, Mar. 1957, pp. 125-134. 

[11] T. Mulhearn, “The deformation of metals by vickers-type pyramidal indenters,” Journal 

of the Mechanics and Physics of Solids,  vol. 7, Mar. 1959, pp. 85-88. 

[12] R. Hill, The Mathematical Theory of Plasticity. 1950, Clarendon Press, Oxford, . 

[13] M. Chaudhri, “Subsurface strain distribution around Vickers hardness indentations in 

annealed polycrystalline copper,” Acta Materialia,  vol. 46, 1998, pp. 3047-3056. 

[14] G. Srikant, N. Chollacoop, and U. Ramamurty, “Plastic strain distribution underneath a 

Vickers Indenter: Role of yield strength and work hardening exponent,” Acta Materialia,  

vol. 54, 2006, pp. 5171-5178. 



76 
 

 

[15] D. Kiener, R. Pippan, C. Motz, and H. Kreuzer, “Microstructural evolution of the 

deformed volume beneath microindents in tungsten and copper,” Acta Materialia,  vol. 

54, 2006, pp. 2801-2811. 

[16] A. Antoniou, A. Bastawros, and B. Biner, “Experimental observations of deformation 

behavior of bulk metallic glasses during wedge-like cylindrical indentation,” Journal of 

Materials Research,  vol. 22, 2007, pp. 514-524. 

[17] A. Antoniou, A. Bastawros, C. Lo, and S. Biner, “Deformation behavior of a zirconium 

based metallic glass during cylindrical indentation: In situ observations,” Materials 

Science and Engineering A,  vol. 394, 2005, pp. 96-102. 

[18] H. Bruck, S. McNeill, M. Sutton, and W. Peters III, “Digital image correlation using 

Newton-Raphson method of partial differential correction,” Experimental Mechanics,  

vol. 29, 1989, pp. 261-267. 

[19] Y. Wang and A.M. Cuitino, “Full-field measurements of heterogeneous deformation 

patterns on polymeric foams using digital image correlation,” International Journal of 

Solids and Structures,  vol. 39, 2002, pp. 3777-3796. 

[20] X. Gao, “An exact elasto-plastic solution for an open-ended thick-walled cylinder of a 

strain-hardening material,” International Journal of Pressure Vessels and Piping,  vol. 

52, 1992, pp. 129-144. 

[21] M. Mata, M. Anglada, and J. Alcala, “Contact deformation regimes around sharp 

indentations and the concept of the characteristic strain,” Journal of Materials Research,  

vol. 17, 2002, pp. 964-976. 

[22] A. Bastawros and K. Kim, “Experimental analysis of near-crack-tip plastic flow and 

deformation characteristics (I): Polycrystalline aluminum,” Journal of the Mechanics 

and Physics of Solids,  vol. 48, Jan. 2000, pp. 67-98. 



77 
 

 

[23] D. Bahr and W. Gerberich, “Plastic zone and pileup around large indentations,” 

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials 

Science,  vol. 27 A, 1996, pp. 3793-3800. 

[24] ASHBY MF, “DEFORMATION OF PLASTICALLY NON-HOMOGENEOUS 

MATERIALS,” Phil Mag, vol. 21, 1970, pp. 399-424. 

[25] A. Al-Abduljabbar and J. Pan, “Effects of pressure sensitivity and notch geometry on 

notch-tip fields,” Polymer Engineering and Science,  vol. 38, 1998, pp. 1031-1038. 

[26] H. Jeong, X. Li, A. Yee, and J. Pan, “Slip lines in front of a round notch tip in a 

pressure-sensitive material,” Mechanics of Materials,  vol. 19, 1994, pp. 29-38. 

[27] L.M. Kachanov, Fundamentals of the Theory of Plasticity, Dover Publications, 2004. 

 

 

 

 

 



78 
 

 

CHAPTER 4: EXPERIMENTAL ANALYSIS OF INHOMOGENEOUS 

DEFORMATION IN BULK METALLIC GLASS DURING WEDGE-LIKE 

CYLINDRICAL INDENTATION  

4.1 ABSTRACT 

Inhomogeneous deformation behavior of  Vitreloy-1 bulk metallic glass has been 

experimentally studied by wedge-like cylindrical indentation. The process zone underneath 

the indenter is in situ monitored to observe the nucleation and propagation of shear bands on 

the front surface. The deformation field is analyzed by digital image correlation technique 

and the severity of deformation is represented as strain maps at each loading increment by 

the in-plane maximum shear strain maxγ . And the strain levels of the shear bands in strain 

maps can be used for visualization purpose only, due to the disparity in gage length for strain 

calculation within the shear bands (o(10~20nm)) and that utilized for the continuum strain 

map (o(10µm)). By measuring displacement jumps of two selected points on the shear bands, 

Lagrangian strain components of the shear band are estimated over the entire shear band 

thickness at different stages of the whole loading cycle. The corresponding Lagrangian strain 

components within the shear band surrounding are evaluated by bi-linear surface fitting local 

displacement distribution. The strain evolution shows that shear band deformation is highly 

discontinuous and the surrounding matrix does not show much activity during the activation 

of the shear band, and vice versa. The strain increment remarkably remains approximately in 

the same direction of the total macroscopic strain vector at every loading stage. The self-

similarity of the deformation field surrounding matrix is indicated by strain increasing 
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without unloading. The measured strain level of a fresh shear band during first activation is 

comparable to the one evaluated from the theoretical model based on continuum mechanics. 

4.2 INTRODUCTION 

Bulk metallic glasses (BMG) exhibit unique combination of high strength, large 

elastic strain limit (up to 2%), [1,2] high hardness [3], corrosion resistance and formability 

[4]. Though, BMG fracture catastrophically by highly localized shear band in unconfined 

geometries, such as uniaxial tension or compression [1,2,5]. For the BMG deformation 

behavior, an empirical deformation map has been developed [6], classifying BMG flow as 

homogenous and inhomogeneous. The homogenous flow occurs at low stresses and high 

temperature [7]. Inhomogeneous flow is seen at high stress and low temperatures, where the 

plastic deformation tends to be highly localized into narrow shear bands. The macroscopic 

observations showed asymmetric deformation behavior between tensile and compressive 

loading [1] with moderate pressure dependent macroscopic yielding behavior [8-11]. Under 

geometric confinement, the BMG deformation exhibit increased ductility, accompanied with 

stable shear bands propagation. Especially under inhomogeneous loading conditions during 

ribbon bending [12], crack tip behavior [13] and indentation field, either in 2D [14,15] or 3D 

[3,9,16]. 

The microscopic mechanisms of the BMG inhomogeneous deformation is 

phenomenological viewed as a cooperative behavior of small clusters of randomly closed-

packed atoms, so called shear transformation zones (STZs) [17], rather than the dislocation 

mechanisms in crystalline metals. The STZs are thought to create a localization of 
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displacements in surrounding regions that triggers the evolution of highly localized shear 

bands during the deformation by creation of free volume [17]. Such phenomenological view 

has been further corroborated by molecular dynamic (MD) simulations [18]. In continuum 

modeling, the free volume is considered to evolve with the applied stress [6]. The BMG 

plastic flow will occur when the free volume created by the applied stress exceeds the 

annihilation/diffusion rates. This microscopic view is generalized by Steif et al. (1982), 

Huang et al. (2002), among many others, to describe the initiation and propagation of shear 

bands. Transmission Electron Microscopy (TEM) analysis of the shear bands have indeed 

shown that the amount of voids has increased within a shear band, relative to surroundings 

[19]. 

Realizing the differences in length scales between TEM observations, MD simulation 

and the continuum description of shear band nucleation and propagations, there is a lack in 

experimental observation of the microscopic deformation evolution for shear bands in BMG. 

In this work, we have analyzed the evolution of the shear band in BMG under constrained 

geometry. The wedge-like cylindrical indentation experiment, developed earlier to allow in 

situ observation of the nucleation and propagation of shear bands, is utilized. The 

deformation field underneath the indenter is analyzed by digital image correlations. Details 

of the material, experimental protocols and the measurements of the shear strain within the 

shear band by digital image correlation (DIC) are given in section 2. The details of the 

experimental results and the history of the deformation filed within the shear band and the 

surrounding matrix are given in section 3.    
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4.3 EXPERIMENTS 

Material System  

The examined BMG is Vitreloy-1 with composition Zr 41.2-Ti 13.8-Cu 12.5-Ni 10-

Be 22.5 (Atomic Weight). Both the X-ray diffraction analysis and TEM studies indicated that 

the system was in the amorphous state [20].  The sample has a cross section of 3mm in width 

by 7mm in height (indentation direction) and total length of 25mm. The sample front surface 

is polished with standard metallographic techniques to 1µm finish prior to indentation 

experiments. A random speckle pattern of 1µm graphite particle is applied on the front 

surface to enables the DIC analysis and estimates of the shear strain within and outside the 

shear bands. The resulting speckle pattern is about 10µm, which will set the analysis window 

to be about three times the average speckle pattern.  

Experimental Setup  

A computer controlled Instron 8862 servoelectric loading frame is utilized for the 

cylindrical indentation test, with controlled crosshead displacement rate of 1µm/s. A SiC 

wedge like cylindrical indenter with root radius, R of 2.4mm is used in the experiment. The 

schematic of the fixture and the alignment of the indenter and sample, as well as systematic 

study of the self-similarity of the field for other indenter radii can be found in Antonia el al. 

[14]. The load-indentation depth curve is shown in Fig.4.1 with the analysis stages marked 

on the curve. On the front surface of the sample, the evolution of the deformation zone 

underneath the indenter is in situ recorded during the course of loading by a traveling 

microscope with 5x lens objective and a progressive-scan camera (SPOT Insight CCD array 

of 2048x2048). A combination of through the lens and external oblique un-polarized white 
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light was used to illuminate the specimen surface. Images are collected every 2 seconds 

during the indentation test. The field of view is 2x2mm with a pixel resolution of 1 pixel/µm. 

This field of view is estimated to cover the entire process zone underneath the indenter up to 

the maximum applied load, based on estimates of the [21] cavity expansion model. A 

composite optical image showing the extent of the process zone at the end of the indentation 

test is shown in Fig.4. 2. 

Strain Analysis 

Digital Image Correlation Analysis  

An in house digital image correlation (DIC) program is used to analyze the 

deformation filed on the front surface underneath the indenter. Pairs of images of the current 

deformed configuration and the reference undeformed configuration are correlated together 

to find the nodal displacement over a uniform grid points of 5 pixel spacing. At each nodal 

point on the reference configuration, a correlation window of 31x31 pixels is correlated to 

the corresponding pair on the deformed configuration. The DIC analysis protocol has two 

steps, (i) a coarse search is used to approximately locate the nodal displacement to the nearest 

pixel [22,23]. The search locates the correlation coefficients maxima within a search area 

(twice the correlation window size) on the deformed configuration. (ii) A fine search, 

utilizing the local intensity distribution, fitted to a two-dimensional third-order B-spline 

function is applied to minimize the error in the nodal displacement vector and their gradients 

[22,23]. Despite the accuracy of the numerical algorithm, the perceived resolution is about 

0.01 pixel (ref. Chapter2). It should be noted that the acquired nodal displacement field, 

while in themselves have a high accuracy, they posses strong fluctuation to render a 
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compatible displacement field. Thus, a 2D second order polynomial is fitted to a smoothing 

window of 9x9 nodes, so as to smooth the higher order fluctuations and provide estimates of 

the displacement gradient. The strain accuracy will be thus controlled by the size of the 

smoothing window, which would set the strain measurement gage length to about 40µm. For 

such limits, the accumulated error in the strain measurements is bounded to about 0.025%. 

The acquired displacement gradients are then used to evaluate the Lagrangian strain 

components of the in-plane strain tensor on the nodal grid of the reference configuration. A 

typical result of the analysis is shown in Fig.4.3 for the in-plane maximum shear strain,
 maxγ  

for the increment of loading, stage5-6 

2 2
max ( ) 4xx zz zxγ ε ε ε= − +

             
 (1) 

The components of the in-plane strains are derived at a spatial point for the whole 

loading cycle relative to the reference configuration, or for an incremental loading step 

during the course of loading.  In this definition, maxγ
   

for the increment of loading would 

represent  a metric of the severity of deformation, without confusing it with the exact 

definition of max (ε, ε)fγΔ = Δ
   

that depends on both the total strain,  ε
 
at a give loading 

stage as well as the increment of stain, εΔ .  The strain map highlights the evolution of the 

shear bands underneath indenter. To this extent, such strain map can be used for visualization 

purpose only, due to the disparity in gage length for strain calculation within the shear bands 

(o(10~20nm)) and that utilized for the continuum strain map (o(10µm)). Thus, no 

quantitative strain levels from such maps can be utilized to calibrate the physical models of 

shear band nucleation and formations. 
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Figure 4.1 The load and indentation depth and analysis steps at different loading stages are 

marked on the curve.  

 

Figure 4.2 a composite optical image of the process zone after unloading and two points of 

interest along shear bands are shown in (b).  
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Estimates of Shear Strain within the Shear Bands 

A typical shear band thickness in BMG is in the order of 10~20nm [24]. The disparity 

between the shear band thickness and the required gage length to evaluate the displacement 

gradient precludes the ability of the DIC to resolve the shear strain evolution within the band. 

The DIC technique overestimates the width of any deformation localization; with localization 

length scale that falls within the implemented gage length for each step of the analysis. For 

larger deformation localization, the effect of the analysis gage length can be corrected (Wang 

and Bastawros, 2010).  When the scale of the localization is much smaller than the analysis 

gage length, the strain estimates are significantly reduced.   Moreover, the spatial shear strain 

distribution within the band, as those shown in Fig.4.3, are nothing but artifacts that 

qualitatively highlights the shear bands.  

Alternatively, if one accounts for the discontinuity in the displacement field across 

the shear band, an estimate of the displacement gradient can be found. Such estimate 

represents an average over the entire shear band thickness, without considering the spatial 

shear strain distribution within the band.  Though, t has to be known, which can be done 

independently after the indentation experiment. For displacement gradient analysis, selected 

points on the shear band were chosen for the analysis at different stages of the whole loading 

cycle. The analysis starts by indentifying the variation of the in-plan displacement 

components in two orthonormal directions, centered at the point of interest along the shear 

band, for all loading increments. The results of two selected points A and B in Fig.4.2 (b) on 

two different shear bands within the network, underneath the indenter will be presented here 

to show the evolution of the shear strain within the band, and in the neighboring matrix. 
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Figure 4 (a-d) shows the variation of the two in-plan displacement components (u, w) at point 

B for the incremental loading stage 5-6, along two orthonormal directions 

(  and H H V V′ ′− − ). The V V ′− direction is chosen to be parallel to the indentation 

direction for ease of analysis.  The displacement jumps ΔUx, ΔWx, ΔUz and ΔWz are estimated 

across the shear band, and marked on the figure. Estimates of the average displacement 

gradients across the shear band will be, 

/ sin / cos

/ sin / cos

x z

x z

U Uu u
x z t t
w w W W
x z t t

θ θ

θ θ

Δ Δ∂ ∂ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥∂ ∂ = ⎢ ⎥⎢ ⎥

∂ ∂ Δ Δ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

                   (2)
 

where, θ is the orientation angle of the shear band with the horizontal direction. Once the 

component of the displacement gradient are defined on an average sense within the shear 

band, the in plane components of the Lagrangian strain components can be evaluated. 

Outside the shear band, such as at point B′ , the local displacement distribution is fitted to a 

bi-linear surface, to evaluate the spatial displacement gradients and the corresponding 

Lagrangian strain components within the shear band surrounding.  

To estimate the shear band width, we assume that the local plastic volumetric strain is 

conserved when the shear band initiates and the out of plane strain is neglected. The 

following expression shows the plastic volumetric strain of BMG: 

0mean band mean matrix
t

t t
λε ε

λ λ− −⋅ + ⋅ =
+ +                        (3) 
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Here, ( ) / 3mean xx yyε ε ε= + , t is the thickness of the shear band and λ is the spacing between 

bands. Also the mean strain values inside and outside of the shear band are chosen at the load 

stage that shear band initiated. By substituting λ , shear band thickness t  is about 15nm 

calculated by Eq.3, which is comparable with the reported value [24].  

4.4 EXPERIMENTAL RESULTS 

Macroscopic Response 

The acquired load-indentation depth curve of the BMG with indenter radius of 2.4mm 

is shown in Fig.4.1. The elastic stiffness of the loading fixture is removed from the loading 

curve. The first shear band is also marked on Fig.4. 1 at a macroscopic load of 3290N, just 

after the stage 1 of analysis.  Employing the elastic Hertzian contact theory [25], the critical 

shear stress for the nucleation of the shear bands as 0.8 GPa [26]. An optical micrograph of 

the shear band morphology is shown in Fig.4. 2, showing self-similarity of the shear band 

pattern underneath the indenter. Analysis of the surface texture, shear band angle and spacing 

[26] showed that they closely follow the slip line field for a pressure sensitive material, with 

dominating surface textures that follow either the α or β lines for each sector.  It was also 

observed that the band spacing is found to scale with the local average of the maximum in-

plane shear strain such that the local strain energy is minimized.   

Results of DIC analysis are shown in Fig.4.5 for the insert of Fig.4. 2(b), highlighting 

the evolution of the shear band network, as maxγ for the total loading till stage 6, and for the 

incremental loading between stage5-6. Careful examination of maxγ for the increment of 

loading stage 5-6 shows that the shear bands are not continuously evolving during the course 
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of the macroscopic applied load.  Focusing on the three marked bands A, B and C on maxγ  

map for the total loading (Fig.4. 5a), only bands A and B can be seen on the maxγ  map for the 

incremental increase in loading stage 5-6 (Fig.4. 5b).  Here, we will focus on the strain 

evolution at these two points A and B, and within the perceived “homogeneously” deformed 

local surroundings, at points A′and B′ . 

 

Figure 4.3 a typical result from digital image correlation (DIC) technique for the in-plan 

maximum shear strain at the loading increment stage5-6; To observe the displacement 

discontinuity, the displacement components are extracted along H-H’ and V-V’ lines.  

 

 History of shear band evolution 

The incremental change of the strain components for each of the monitored loading 

stages on Fig.4. 1 is calculated using the algorithm elaborated in Sec. 3.2 for the spatial 

points, marked on Fig.4. 5b. For each group of incremental strain components,  maxγ  is 

evaluated employing Eq. (1). The average shear strain bandγ  over the shear band width is 

summarized in Figs. 6 for the two spatial locations A and B.  The evolution of bandγ  and maxγ

outside the band are plotted against a load derived shear strain measure, maxγ  at the same 

Stage 6‐5

-400 -200 0 200 400

400

600

800

γmax
0.02
0.016
0.012
0.008
0.004
0

B’
H H’

V

V’

B



89 
 

 

spatial point. The maxγ  represents the homogeneous maximum in plane shear strain, derived 

from the Johnson’s cavity expansion model (Johnson, 1970), as elaborated further in 

Appendix 1.  The evolutions of bandγ and maxγ for each of the monitored loading increments are 

shown in Fig.4. 6a, b for both the shear band and its surrounding. Filled symbols represent 

activity within the shear band.  It is apparent that there are close to three order of magnitude 

difference between the accumulated shear stain within the band and the surrounding matrix.  

During the activation of the shear band, the surrounding matrix does not show much activity, 

and vice versa, as indicated by the pairing of filled and unfilled symbols on the figure. By 

combining continuous loading increments with same shear band activation status, the 

variation of
 bandγ with maxγ  for the shear bands A, B and their surroundings maxγ are shown in 

Fig.4. 6c, d. As shown, before shear band nucleation the accumulated matrix shear strain 

maxγ  is around 3.35 ~ 4%, which is consistent with homogeneous strain estimations maxγ of 4-

6% based on cavity expansion model. Once the shear bands initiated, they propagate 

discontinuously with a significant increment of plastic shear strain of about 3170~3550%. 

The components of the total strain at each loading stage are evaluated at the spatial 

observation points based on the measured incremental strain components, such that 

   ( 1) ( )ij ij ijn nε ε ε+ = + Δ .         (3) 

The total strain components are used to evaluate the measure of the deformation severity maxγ . 

Fig.4. 7a, b shows the evolution of bandγ averaged over the shear band width, and maxγ over 

the surrounding matrix. The total accumulated shear strain within the band reaches 18000-

19000%. The surrounding matrix around the shear band has total averaged shear strain about 
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6-7%. It is clearly seen that shear band deformation is highly discontinuous. The strain level 

of the surrounding matrix increases with different strain rate during loading, but not 

monotonic increasing with the possibility of relaxation as marked in Fig.4.7b at site A.   
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Figure 4.4 The variation of two in-plane displacement components at point B for the incremental loading stage 5-6, along two 

orthonormal directions (H-H’ and V-V’) shown in Fig.4.3.  
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Figure 4.5 Results of DIC analysis for Fig.4.2 (b) that highlight the evolution of the shear band network, for the total loading till 

stage 6 and for the incremental loading between stage 5-6.  
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Figure 4.6 The evolution of in-plane maximum shear for each of the monitored loading increments: (a) and (b) for both shear band 

and their surroundings; the filled symbols show activity within the bands. (c) and (d) combine continuous loading increments with 

same shear band activity status for both shear band and their surroundings.  
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Figure 4.7 The evolution of total in-plane maximum shear strain averaged over the shear band width and the surrounding matrix  
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4.5 DISCUSSION 

Shear band Nucleation 

According to Huang’s model (2002)[27], the inhomogeneous deformation occurs at 

the stress-driven creation of free volume becomes more significant and also the average 

strain has been accumulated at certain value. Following their example of simple shear 

problem and as for our experimental investigation of the shear band first initiation at spatial 

point (A or B), we validate the numerical model by utilizing experimental parameters. The 

total shear strain rate is  

1 ( , )e
e

d d f
dt dt
γ τ τξ τ

μ τ
= + ,                 (4) 

Where τ is shear stress; ξ is the free volume; eτ is effective stress. The shear strain 

distribution across the shear band could be computed at the integration points.  More results 

about the numerical model will be introduced in Appendix2. In Fig.4. 8, the maximum shear 

strain inside of the shear band has been plotted against average strain aveγ , in which aveγ

indicates the time steps ave rtγ = and r is the averaged strain rate over the shear band. The 

numerical result shows that the localized deformation occurs at 6.1%aveγ ≈  with a shear 

strain jump about 150%. For our experimental observation, the measured in-plane maximum 

shear strains maxγ  over the bands are also plotted against the homogeneous average shear 

strain maxγ  in Fig.4. 8, when the shear bands initiate at the spatial points A, B. The magnitude 

of the accumulated maximum in-plain shear strain at point B is comparable with the one from 

simulation result. It also indicates that localization initiates at point B when the averaged 
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homogeneous strain reaches the level of 6.2%. About the other shear band A, it keeps active 

in two continuous incremental steps and the sum of these two continuous shear strain jumps 

is around 780%. The shear band nucleates as the average strain is about 4.0%. This is 

probably because the band A is an existing shear band before it passes spatial point A. 

Therefore, it doesn’t need to accumulate so much energy to propagate the shear band as the 

one needed for a fresh shear band. Moreover, the intermittent deformation behavior of the 

shear band shows that the magnitude of the subsequent shear band nucleation after the 

initiation is higher than the first one as indicated in Fig.4. 6c, d.  Comparable results also 

have been reported in the macro-response of the uniaxial compression test [28], in which the 

magnitude of the displacement serrations increases with plastic strain at later loading stages. 

This phenomenon has been demonstrated to be primarily caused by the intermittent abrupt 

sliding events which are the result of preferential shear band formation on an existing shear 

band in a BMG sample [29].  

 Nature of the deformation 

The components of the total strain at the spatial observation points for each loading 

stages are evaluated by utilizing Eq. (3), based on the incremental strain components which 

are calculated along two orthogonal directions x,z shown in Fig.4. 3. The corresponding 

strain components for the shear bands and their surroundings are so called xxε , zzε and xzε  

plotted in Mohr’s circles as shown in Fig.4.9 and Fig.4. 10.  At the two spatial point A and B, 

shear bands have different inclined angle with the horizontal direction, 45⁰ and 37⁰, 

respectively.  Therefore, the strain states at each loading stage are also shown in Mohr’s 

circles with respect to the rotated coordinates, along and normal to the shear band direction, t 
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and n. According to the definition in Antoniou et al (2007), band A and B belong to different 

shear band set. Band A is one of the primary formed shear band, which appears at the 

propagating front of the deformation; While band B is termed band with band that appear 

within previously formed bands. As can be seen in Fig.4. 9, it clearly indicates that band A 

primarily have simply shear deformation along shear band directions during the course of 

loading. The nnε  strain components increase to stretching magnitude of 12000% and the 

level of shear strain ntε rises to 1000%, while the ntε components are very small relative to 

nnε component. About the surroundings, the strain Mohr’s circles are shown in Fig.4. 10 at 

different loading stages. The two strain states show that the matrix outside of the shear band 

deforms in form of pure shear to accommodate the shear band deformation. However, the 

mean strain meanε of the surrounding matrix has a compressive status during the deformation 

with an averaged mean strain value of 0.29~0.30% during the whole deformation as shown in 

Fig.4. 11.  
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Figure 4.8 Analytical estimation and experimental measurements of the maximum shear 

strain inside of the shear band, in which experimental measurement for band B is more 

closed to the analytical result.   
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Figure 4.9 Strain component of shear band A and B are plotted in Mohr’s circle. Different 

loading increments with active shear band are indicated by different colors. It shows that the 

nature of shear band deformation is simple shear.  

 

Ezz

E
xz

0 300 600 900
-400

-200

0

200

400

NT-direction
XZ-direction

Ezz (%)

E
xz

(%
)

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

NT-direction
XZ-direction

(a)



101 
 

 

 

Figure 4.10 Strain component of the surrounding matrix are plotted in Mohr’s circle. 

Different loading increments with active shear band are indicated by different colors. It 

shows that the surrounding matrix deforms in form of pure shear to accommodate the shear 

band deformation.  
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The in-plane reduced Mohr strain plot will be used to understand the plastic flow 
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can be seen. This is a clear indication of the self-similarity of the deformation field in the 

surrounding matrix.   

 

Figure 4.11 (a) the mean strain of the shear band increases with loading and show dilation 

property of shear band. (b) The mean strain of the surrounding matrix keeps almost constant 

during the loading, with average value of 0.3%. 
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Figure 4.12 The in-plane strain components of surroundings are plotted in to reduced Mohr’s 

circle (a) and (b). Since the incremental strain and the total strain keep almost same direction, 

it indicates self-similarity property of the shear band deformation.  

4.6 CONCLUSION 

       Experimental study of the inhomogeneous deformation of metallic glass on 

microscopic level has been developed under wedge-like cylindrical indentation test by 

utilizing the digital image correlation technique. The evolution of shear band at fixed location 

has been investigated, including the nucleation strain level, strain increments inside of the 

shear band and the situation of the surroundings. It finds out that the shear band propagate 

highly discontinuously with different strain increment rate as their surrounding matrix. The 

shear band and the surroundings alternatively show their activity and the accumulated strain 

level inside of the shear band is higher than the one of the surroundings about 3 order 
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magnitudes. To explain the experimental observation about the shear band nucleation, a 

theoretical model has been used by initializing the experimental parameters and the 

simulation results are comparable with the experimental measurements, which characterizes 

the shear band initiation and post yield response on the microscopic level. Also, the nature of 

the shear band deformation is simple shear, while the surrounding matrix has pure shear 

deformation to accommodate the shear band propagation.  

4.7 APPENDIX 1: CAVITY EXPANSION MODEL 

The well-known theoretical solution of plastic-elastic expansion of a cylindrical tube 

was primarily based on the Tresca yield criterion and elastic-perfectly plastic model [30]. 

Then, based on Johnson’s cavity expansion derivation [21], the following relation is obtained:  

( ) ( )

2 2 12 1 (1 2 ) tan
1 2

c E
a k

ν ν β
π ν

⎛ ⎞− − − =⎜ ⎟ +⎝ ⎠
                          (A.1-1) 

Where E is the Young’s modulus, ν is the Poisson’s ratio, c is the plastic zone size, a 

is the contact radius, k is maximum in plane shear strength and β is the angle between the 

indenter flank and the surface. In this study, we estimate the plastic zone size c from the 

following: 

2 / 1
/ 1(1 ) 1 22

/ 2 2(1 )

p k
p kc e e

R E k k
ν νπ

ν

−
−⎛ ⎞− −

= −⎜ ⎟−⎝ ⎠
                               (A.1-2) 
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Here, 0.5k Y= and p is the mean pressure within the cavity core. For an applied force F with 

the corresponding indentation depth h, / (2 2 )p F W Rh= , where W is the indenter width. 

From the radial displacements expression found by Hill (1950): 

(1 )(1 2 ) (1 )(1 )1 2ln( )
2
Y c cu r Y c

E r E r
ν ν ν ν+ − + −⎛ ⎞ ⎡ ⎤ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠

 

Under the small strain assumption, the strains in the elastic-plastic zone are:  

2

2

(1 )(1 2 ) (1 )(1 )2 ln( ) 1
2

(1 )(1 2 ) (1 )(1 )2ln( ) 1
2

r
u Y c cY
r E r E r

u Y c cY
r E r E rθ

ν ν ν νε

ν ν ν νε

∂ + − + −⎛ ⎞ ⎡ ⎤ ⎛ ⎞= = − − −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠

+ − + −⎛ ⎞ ⎡ ⎤ ⎛ ⎞≈ = − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠

 

The maximum in-plane shear strain in elastic-plastic zone could be deduced as: 

2

max
(1 )(1 2 ) (1 )(1 )

2
Y cY

E E r
ν ν ν νγ + − + −⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                   (A.1-3) 

where 2Y k= ,for elastic-plastic zone ( a r c≤ ≤ ). More details about derivation could be 

found elsewhere (Antoniou thesis). 

To estimate the nominal strain rate by cavity expansion model inside of the elastic-

plastic zone, we need to do the time derivative of Eq. A.1-3 and A.1-1: 

( ) ( )1 1
eff

ccY
E r

ν ν
ε

− +
=                                                          (A.1-4) 
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By plugging tan a
R

β = and 2a Rh=  into the time derivative of Eq.A.1-1, the final result 

could be summarized as following:  

( )
( ) ( )2

1 2 3 2
2 1 4 1

R h E Rh hcc
k

ν
ν π ν

•
−

′ = +
− −

                                                (A.1-5)         

Here, h is the indentation depth and h
•

is the loading rate in the experiment; R is the radius of 

the indenter.     

Finally, the nominal strain rate could be expressed as:  

( ) ( ) ( )
1 3 22 1 2
2 1eff

k E Rh hR h
Er k
ν

ε ν
π ν

•
• •⎡ ⎤+ ⎢ ⎥= − +

⎢ + ⎥
⎣ ⎦

                     (A.1-6) 

4.8 APPENDIX 2: NUMERICAL MODEL FOR INHOMOGENEOUS DEFORMATION 

IN METALLIC GLASS 

In Huang ‘s model (2002)[27], it assumes that the average strain rate of the thin layer 

is a constant. Based on the reported model about the shear band [31], the average strain rate

'
aveγ is equal to the volume weighted average of the strain rate inside and outside of the band, 

according to: 

' ' '(1 )
b o ave+ − =ργ ρ γ γ                                              (A.2-1) 
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Where ρ is the volume fraction of the thin band (a typical value of 10-6 will be used), 

'
bγ is the strain rate inside of the band, which has the range of 5×103- 7×104 s-1 from the 

measurement of uniaxial compression test[28]; and '
oγ is the strain rate outside of the band, 

which we assume as homogeneous maximum in plane shear strain rate maxd dtγ defined 

from Cavity Expansion Model (See Appendix1). r  is the average strain rate, defined as  

'1
2

h

ave
h

r dx
h −

= ∫ γ                                                   (A.2-2) 

Here 2h is the width of the thin layer. Based on the sample used in this study, shear 

modulus μ of the BMG is 36GPa and the value of the normalized shear modulus μ  is 53, 

which is defined as:  

2 Bk T
μμ Ω

=                                                             (A.2-3) 

Here, Ω is the atomic volume of the BMG which is 1.64×10-29m3; Initial free volume 

concentration and parameter R are defined same as Huang’s model (2002).  

Here, we just show the main equations that we used to do the simulation by plugging 

our experimental parameters.  

The stresses and strains are assumed to be zero in the initial configuration. By finite 

element method and a semi-implicit algorithm for the time integration, the free volume is 

updated by solving the following equation: 
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2

2 ( , )eD g
t x
ξ ξ ξ τ∂ ∂
= +

∂ ∂
                                                     (A.2-4) 

Where 1( , ) exp cosh 1
2

e
e

B D

g R
k T n
τα αξ τ

ξ β μξ
⎧ ⎫⎛ ⎞⎡ ⎤ Ω⎪ ⎪= ⋅ − − −⎨ ⎬⎜ ⎟⎢ ⎥
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 from Spaepen‘s model 

(1977), in which 1, 0.15, 3dnβ α= = = and 0 exp
m

B

GR
k T

ν
⎡ ⎤Δ

= −⎢ ⎥
⎣ ⎦

. Here, 0ν ~1013s-1, mGΔ ~10-

19J and Bk T ~5×10-21J with T~400K.  

The shear stress is computed from the following equation by the integration with 

respect to x with Gaussian quadrature method.  

1 ( , )
2

h

e
eh

d r f dx
dt h
τ τμ ξ τ

τ−

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∫                                   (A.2-5)   

where ( , ) 2 exp sinh
2

e
e

B

f R
k T
ταξ τ

ξ
⎡ ⎤⎡ ⎤ Ω

= ⋅ − ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

, and eτ is the effective stress, 2 21
3eτ τ σ= + . 

Therefore, at each time step, the shear stress and free volume concentration at next time step 

are computed from Eqs. A.2-4 and A.2-5, respectively, using the values of current time step. 

Then the normal strain could be calculated by: 

1 1( , )
2 6 3

h

e
eh

d f dx
dt h t
ε σ ξξ τ

τ−

⎡ ⎤∂
= +⎢ ⎥∂⎣ ⎦

∫                            (A.2-6)   

After that, the normal stress σ could be computed at each integration point from the 

following equation, 
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1 2 1( , )
2 6 3e

e

d f
dt t t
ε ν σ σ ξξ τ

μ τ
− ∂ ∂

= + +
∂ ∂

 .                        (A.2-7)   

At the last step, the shear strains γ  at the integration points are computed from the 

equation as shown: 

1 ( , )e
e

d d f
dt dt
γ τ τξ τ

μ τ
= +                                            (A.2-8) 

 Fig.4. 13(a) shows the maximum shear strains inside of the shear band have with 

different strain rates. Since the strain rate in our experiment is an approximated value, several 

normalized strain rates have been tried in the simulation and finally r/R=5.9×10-7 is chosen 

because of the best fitting experimental results. The variation of the shear stress normalized 

by shear modulus is shown in Fig.4.13 (b), in which the shear stress starts to drop at the 

6.1%aveγ ≈ marked as active strain. Also, the variation of the simulated free volume 

amplitudes with the distance relative to the band center at different time steps is plotted in 

Fig.4.13 (c), which also demonstrates that the free volume disturbance starts to grow at same 

average strain level. 
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Figure 4.13 (a) maximum shear strains inside of shear band with different strain rates.(b) the 

variation of the shear stress normalized by shear modulus and the average strain and  

it shows shear band initiates at about 6% stain level. (c) The simulated free volume amplitude 

varies with distance relative to the band center, which also shows the instable growth at the 6% 

of average strain.  
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CHAPTER 5: DEFORMATION AND FRACTURE TESTING OF NI-BASED BULK 

METALLIC GLASS COMPOSITE BY WEDGE-LIKE INDENTATION  

5.1 ABSTRACT: 

The deformation and damage evolution behavior of a Ni-based bulk metallic glass 

(BMG) composite reinforced with elongation brass phase is studied under wedge like 

cylindrical indentation. The estimated fracture toughness values based on the energy 

dissipation and the in-situ observation during the loading reveal the details of the damage 

evolution and toughening mechanisms in this composite system. The results indicate that the 

enhanced toughness of the BMG composite is plausibly an outcome of crack bridging 

mechanisms by the ductile brass phase, rather than a diffused array of nucleated shear bands 

in the hard BMG and arrest by the ductile reinforcing phase. The site of the first shear band 

initiation and process zone size were studied by the experimental estimation and the 3D FEM 

simulation and it shows that the critical stress and strain for parallel and normal loading 

composites, respectively, controlled the local fracture commence over a characterized size 

scale. 

5.2 INTRODUCTION: 

Although bulk metallic glasses (BMGs) as amorphous metals exhibit high strength, 

perfect elastic behavior and corrosion resistance at room temperature [1], however, they also 

exhibit very limited macroscopic plasticity with the highly localized shear bands, followed 

by crack initiation and unstable crack propagation [2,3]. To prevent the catastrophic failure, a 

new class of BMG composites has been developed by introducing different ductile metal 



115 
 

 

reinforcements, such as particles, fibers, or in situ formed precipitates, which lead to higher 

ductility, fracture toughness and fatigue endurance [4, 5, 6]. It has been observed that the 

shear bands can transverse the ductile reinforcement [6], which also would inhibit the 

propagation of localized shear bands within the BMG. The size and volume fraction of the 

reinforcements also play an important role on the incremental ductility of BMG composites 

[7, 8].  

Recently, the Ni-based BMG and BMG composite containing brass fibers were 

fabricated by warm extrusion of gas atomized powders [9] and the plasticity of the BMG 

composites with different volume fractions and powder sizes were studied. The results 

showed that the BMG composite with 40% volume fraction of the brass phase showed 

highest ductility and the powder size of the brass is less than 63 µm. The mechanical 

properties of the BMG and BMG composite have been tested by uniaxial compression test 

along the extrusion direction and the stress-strain curve is shown in Fig.5.1, in which a 

monolithic Ni-base BMG by Cu-mold injection casting was compared [10]. As shown in the 

Fig.5.1, the injection casting BMG has the highest strength with 2% plastic strain to failure 

and the BMG by warm extrusion didn’t show any plastic strain before failure. But the BMG 

composite has improved ductility compared to the warm extrusion BMG. 

Indentation experiments are increasingly being used to evaluate the mechanical 

properties of bulk metallic glasses, due to their very limited ductility. The deformation filed 

under the indenter experiences a constraint plastic flow, and thereby provides stable 

deformation path to study the evolution of the deformation mechanisms. In order to reveal 

the deformation field under indentation, serial sectioning and etching techniques are utilized 
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[11]. A new experimental methodology to obtain in-situ observation of the evolution of the 

deformation behavior of bulk metallic glass under a cylindrical indenter has been developed 

[12,13], which resolved the much-needed information on the temporal and spatial evolution 

of the shear bands.    

 

Figure 5.1 Stress-strain curves for the injection cut BMG, warm extrusion BMG and BMG 

composite reinforced by 40% brass under uniaxial compression test. [10] 

In this study, the evolution of the deformation and damage in the BMG/Brass 

composite system was studied with an experimental set up that enables in-situ observations 

during the course of a wedge like cylindrical indentation. By quasi-static loading mode, the 

BMG/Brass composite was indented in two directions, parallel and normal to the extrusion 

direction, and more details will be presented in the following sections. 
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5.3 EXPERIMENTS 

Material System  

The composite studied was the Ni-rich 59 20 16 2 3Ni Zr Ti Si Sn metallic glass matrix 

composite, containing a ductile brass phase by warm extrusion method. The initial 

amorphous and ductile phase powders were spherical with the same size range (<63µm) and 

the volume fraction of the brass phase was 40%. The resulting reinforcement morphology in 

the composite was short discontinuous fibers and aligned in the warm extrusion direction and 

the interparticle spacing (λ) along the direction normal to the extrusion direction is 65µm 

measured by line-intercept method (Fig.5. 2a). A homogeneous BMG matrix only sample 

“termed as monolithic BMG” was also prepared separately by identical warm extrusion 

processing for comparison (Fig.5. 2b). Both the x-ray diffractometry (XRD) and DSC studies 

indicated that the existence of amorphous and brass phases in composite sample and no 

devitrification occurred in monolithic sample throughout the extrusion process. A more 

detailed introduction about the fabrication of this metallic composite has been given by ref 

[9]. 

Two BMG composite specimens with different loading orientations were tested in 

this study. One of the samples was loaded along the extrusion direction with a cross section 

of 2.72mm in width by 6.35mm in height (indentation direction) and the total length of 

6.43mm. The other composite sample was loaded normal to the extrusion direction with 

same cross section dimension as the parallel loading specimen and total length of 16.3mm. 

The monolithic BMG specimen has the same dimension as the composite of normal loading.  
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Experimental Setup  

An Instron 8862 servoelectric loading frame was used to do the cylindrical 

indentation experiments, with loading rate of 1µm/s. The loading fixture is shown in Fig.5. 

2c [12], which could ensure the contact line between the indenter and specimen top surface 

was perpendicular to the front plane of the sample. SiC wedge like cylindrical indenters with 

root radii, R of 0.8, 1.6, and 2.4mm were used in this study. On the front surface of the 

samples, the evolutions of the deformation zone underneath the indenter were recorded 

simultaneously with the loading by a progressive-scan camera (SPOT Insight CCD array of 

2048x2048) with a traveling microscope having 5× objective lens and 2mm 2mm× field of 

view. Sufficient illumination was required in the indentation region and imaging rate is 2 

images per second.  

5.4 RESULTS: 

Macroscopic trends 

The resulting load-indentation depth curves for two loading directions of the BMG 

composite and monolithic BMG with same indenter radius R of 0.8mm are summarized in 

Fig.5. 3a, in which the elastic stiffness of the loading fixture has been removed. A full 

surface contact was established when the linear elastic deformation started, at which zero 

indentation depth of the force-displacement curves was set. As can be seen, the monolithic 

BMG specimen exhibited the largest stiffness and very limited ductile deformation before the 

catastrophic failure. On the other hand, different loading directions resulted in an anisotropic 

behavior for the BMG composite case. The sample that was indented in parallel direction to 

the reinforcement yielded higher stiffness, but still failed in an unstable manner without 
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permitting a controlled unloading, while the sample of normal loading shows higher ductility 

but relative lower stiffness. Since the experimental set up enables the direct observation of 

the nucleation of the shear bands and continuous evolution of deformation under the indenter, 

the load levels at which the first appearance of the shear bands are also indicated in Fig.5. 3a. 

To explore the role of different indenter radii on the mechanical properties of the 

BMG composite, there are two additional indentation tests conducted on the normal loading 

composite sample with different radii R of 1.6 and 2.4 mm. The load-indentation depth 

curves for the normal loading composite with 3 different indenter radii are shown in Fig.5. 3b, 

which also indicates the load levels of the first shear band initiation in each case. From Fig.5. 

3, it shows that with same indenter radius (R=0.8mm) the parallel loading composite initiated 

the shear band at the lowest load level and monolithic BMG started at highest load level, 

while for the normal loading composite, the lager indenter radius, the higher load level to 

initiate the shear band. Similar results were reported in the cast BMG wedge like cylindrical 

indentation tests [12].  
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Figure 5.2 (a) Microstructure of the composite BMG, containing a 40% volume fraction brass phase. (b) The monolithic BMG 

matrix. (c) Schematic of the loading configuration, after [12]. 
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Figure 5.3 Force – displacement curves of the cylindrical indentation tests and the positions of the first shears band initiation 

marked with solid circles. (a). Indentation tests on monolithic BMG, parallel loading composite and normal loading composite 

samples, with indenter radius R=0.8mm. (b). Indentation tests of the normal loading composite sample with indenter radius 

ranging from 0.8mm to 2.4mm. 
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Evolution of the deformation and damage 

The indentation process of the normal loading BMG composite with indenter radius 

of 0.8 mm is summarized in Fig.5.4. The force-indentation depth curve is shown in Fig.5. 4a. 

There are several different loading stages marked with different letters on the curve and Fig.5. 

4b-g show the corresponding images, which were recorded during the course of the 

indentation test. The images in Fig.5.4 are cropped ones that only show the regions 

underneath the indenter. Fig.5. 4b indicates the first appearance of the shear bands, which 

was nucleated at the interface of the BMG and brass phase. The indenter position was 

marked with white dash line, which could be adjusted from the rest of the image. And the 

blurred region between the indenter and the specimen top surface is due to the shade of the 

indenter under illumination. Fig.5. 4e-g show that a limit finite deformation zone was formed 

immediately underneath the indenter with out of plane motion during the indentation and a 

dark region correspondingly appeared in the images. With the increasing load more shear 

bands initiated and then turned to be cracks with radial emanation from the indenter. 

However, there are only several major cracks propagating further along the crack paths 

during the indentation test and lots of microcracks emanating in the glass matrix phase along 

the indentation direction.  

The final microstructure of this normal loading composite was examined by SEM and 

scanning electron micrographs for deformation and damage zone closed to the indenter are 

shown in Fig.5. 5, where shear bands and cracks originated at the interface of the BMG and 

brass phase with some evidence indicated by arrows in Fig .5a, c. We also observe an 

extensive bridging of those well-developed microcracks that are parallel to the indentation 
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direction by the brass phase. Because of the compression stress state in the radial direction, 

there are no delamination found when the cracks encountered the brass fibers and Fig.5. 5b 

has indicated how the major crack passed through the brass fibers.  More details about the 

evolution of microcracks in the BMG matrix are summarized in Fig.5. 6, in which some of 

the microcracks appeared in the middle of the brittle matrix (Fig.5. 6c) and some consequent 

contact between the microcracks surfaces are observed, as shown in Fig.5. 6 a, b, d.  

For the parallel loading BMG composite, the recorded images about the evolution of 

the deformation zone are shown in Fig.5.7. In the force-displacement curve Fig.5. 7a, 

different loading stages are marked with different letters and Fig.5. 7 b-g show the sequence 

of images. As observed from Fig.5. 7b, the damage initiation took place at an early stage with 

the debonding along the interface of the reinforcing phase. This interfacial cracks quickly 

developed into major cracks (Fig.5. 7 c-g) that became unstable very quickly without 

permitting evolution of usual deformation zone below the indenter. The SEM image about 

the final damage zone of the parallel loading composite is indicated in Fig.5. 8a, in which 

shows the details of the major crack leading fracture (Fig.5. 8b). After the composite failed, 

the broken parts didn’t separate from each other and they are connected by some intact brass 

fibers which are illustrated in Fig.5. 8c.   
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Figure 5.4 The evolution of the deformation zone, for the normal loading composite under cylindrical indentation test with 

indenter radius of 0.8mm. (a) the force-indentation depth curve. (b)-(h) images immediately underneath the indenter corresponding 

to different loading stages, which are marked in the force-displacement curve.  
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Figure 5.5 SEM images of the deformation zone for the perpendicular loaded specimen with indenter radius of 0.8mm after 

unloading. (a) SEM images for the finite deformation zone underneath indenter. (b) major crack propagation by  ductile rapture of 

brass fibers, which is the detail of the window 1 in (a). (c) microcracking evolution in the glass matrix of the deformation zone, 

which is the detail of the window 2 in (a). 
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Figure 5.6 SEM results show more details about the microcracks evolution in the metallic glass matrix  
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Figure 5.7 The evolution of the damage zone, for the parallel loading composite under cylindrical indentation test with indenter 

radius of 0.8mm. (a) The force-indentation depth curve. (b)-(h) images immediately underneath the indenter corresponding to 

different loading stages, which are marked in the force-displacement curve.  
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Figure 5.7 The evolution of the damage zone, for the parallel loading composite under cylindrical indentation test with indenter 

radius of 0.8mm. (a) The force-indentation depth curve. (b)-(h) images immediately underneath the indenter corresponding to 

different loading stages, which are marked in the force-displacement curve.  
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Figure 5.8 SEM images of the deformation zone for the parallel loaded specimen with 

indenter radius of 0.8mm after fracture without separation. (a) SEM images for the finite 

deformation zone underneath indenter. (b) the details about the mergence of two major 

cracks (c) intact brass fibers connected two broken parts of the composite along the failure 

crack .  
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Deformation mechanism 

Fracture Toughness 

The macroscopic load-indentation in conjunction with the monitored crack 

trajectories under the indenter are used to estimate the fracture toughness of the composites. 

Then energy release rate, G (or J-integral) as measure of the energy available for a crack 

extension is given by: 

G ൌ J ൌ െ ୢΠ
ୢA

             (1) 

where Π is the potential energy of the tested specimen and A is the crack area [14,15]. The 

evolutions of the crack underneath the indenter were determined from the images that were 

simultaneously recorded during the course of the indentation. Although, the measured crack 

lengths from the front surface cracks may not be the through-thickness cracks as implied by 

the Eq.1, however, we assumed the measured surface crack length would provide an average 

estimate of the total crack length per unit specimen thickness. The driving energy for fracture 

is estimated as total energy supplied to the system by the indenter (area under load-

indentation depth curve) and subtracting the elastic unloading energy at each load. In doing 

so, the specimen compliance was assumed not to change significantly with the crack 

advances and thereby the slop of unloading curves at different stages of crack advance could 

be assumed to remain the same as that of the final unloading curve in Fig.5. 3. The variation 

of energy and incremental total crack length for each indentation test of the BMG composite 

are summarized in Fig.5. 9a. As can be seen, the energy dissipated in the normal loading 

cases for the composite is much higher than the parallel loading case. Fig.5. 9b illustrates the 
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derivative of the energy with incremental crack area based on Fig.5. 9a. The energy release 

rate (G=J) at the steady state crack propagation was around 10 ܬܭ/݉ଶfor the normal loading, 

while for the parallel loading ,this value was around 5 ܬܭ/݉ଶ. Since the energy release rate 

can be related to the stress intensity factor K: 

ܩ ൌ ܬ ൌ ௄మ

ா′
     (2) 

where ܧ′ ൌ ሺ1/ܧ െ  ଶሻ for plane strain, ν is the Poisson’s ratio and E is the Young’sߥ

modulus of the composite. Both E and ν were estimated from the law of mixtures based on 

the volume fraction of two phases in the composite. There for the critical stress intensity 

factors for the composite are around to be 34ܽܲܯ√݉  and 24 ݉√ܽܲܯ   for normal and 

parallel loading cases, respectively.  

Process zone size  

The loading levels of the first shear band initiations have been marked in the force-

indentation depth curves (Fig.5.3) for each indentation test. Therefore, the nucleation 

pressure P underneath the indenter can be estimated by [16]:  

ܲ ൌ ி
ଶ௔௪

      (3) 

where ܨ is the applied loading level, ݓ is the width of the sample and  ܽ ൌ √2ܴ݄ , which is 

the contact radius. The indentation depth ݄ could be measured from Fig.5. 3 and R is indenter 

radius. The normalized process zone size (ܿ/ܴሻ for the first shear band nucleation also could 

be approximated by the Cavity Expansion Model:  
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      (4) 

Here, Tresca Criteria is assumed and  ݇ ൌ  ௬is the yield stress, E is the Young’sߪ ௬ whereߪ0.5

modulus, R is the indenter radius and ν is the Poisson’s ratio. The variation of the nucleation 

pressure P and the normalized process zone size (c/R) for all of the indentation tests are 

summarized in Fig.5. 10a. The yield stresses for both of the BMG composite and the 

monolithic BMG are approximated by the uniaxial compression yield stress along extrusion 

direction shown in Fig.5.1 [10] and the indentation depths are measured form the force-

displacement curves (Fig.5.3) when the first shear bands initiated. We observe that the 

nucleation pressures for all of the BMG composites are independent on the loading direction 

and almost at the same level, which is around 1200ܽܲܯ. On the other hand, the monolithic 

BMG has much higher nucleation pressure about 3200 ܽܲܯ, comparable to the one of cast 

BMG [12]. It also has the largest normalized process zone size, which is around 0.4. For the 

BMG composite with different loading directions, the normalized process zone size are 0.14 

and 0.24 for the parallel loading and normal loading, respectively.  

Since the images, for the moment when first shear band appeared, were taken during 

the course of the indentation tests, the distance (ݖ) between the location of the first shear 

band and the center of the indenter could be approximately measured from the images. 

Fig10.b illustrates the distances (ݖ) for the BMG composites and monolithic BMG, which are 

normalized by the process zone size ܿ based on Eq. 4.  As can be seen, the monolithic BMG 

has almost the same ݖ/ܿ value (0.35) as the composite of normal loading, for which the value 
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 ܿ/ݖ is independent on the indenter radius R. On the other hand, the normalized distance ܿ/ݖ

for the parallel loading composite is around 1.1 much higher than the rest.  

5.5 DISCUSSION 

The utilization of the wedge like cylindrical indentation has ensured the stable 

evolution of the deformation mechanism under the indenter by confined plastic flow. The 

variation of the macroscopic responses for all situations has shown that the monolithic BMG 

has higher stiffness with little ductility and very small zone of shear bands started under the 

indenter, leading to the development of major cracks that traversed the entire sample in an 

unstable manner. However, both of the macroscopic response and the microstructure of the 

damage zone have indicated that the BMG composite has high anisotropic properties with 

loading orientations. For the normal loading case, an extensive nucleation of cracks 

emanating in a radial direction can be seen and the network of cracking does not resemble the 

usual net-work of shear band formation that is usually seen for homogeneous cast BMG [12]. 

Based on the evolution of the damage zone, all of the cracks started as shear band first 

emanating from the BMG/Brass interface, while the broken brass fibers along the crack 

trajectory and the crack bridging mechanism by the brass fibers were observed during the 

crack propagation, which have a significant contribution to the fracture toughness. In the 

parallel loading case, once the interfacial cracks along the BMG/Brass phase were nucleated, 

they turned into the major cracks and lead the fracture in an unstable way. It appears that the 

increase of ductility and toughness in the normal loading direction is a result of both dilation 

originating from the nucleation of a large number of radial cracks and bridging of the main 

cracks by the ductile reinforcing phase.   
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Figure 5.9 (a) Variation of total fracture energy and incremental total crack length obtained from the indentation test of BMG 

composite. (b) The energy release rate G=J and crack increments curve for BMG composite for the different loading orientations. 
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Figure 5.10 (a) the variation of the pressure and the ratio of the process zone size (c) normalized by indenter radius, when the first 

shear band nucleated in different specimens. R is the indenter radius which is 0.8mm. (b) the variation of the pressure and the ratio 

of the first shear band initiation position normalized by the corresponding plastic zone size.  
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At ambient temperatures, the reported fracture toughness values for most of the 

BMGs are in the range of 15~20[18 ,17] ݉√ܽ݌ܯ. In this study, as discussed in Section 3. 

3.1, the fracture toughness values of the normal and parallel loading composites are 

proximately 34 ܽ݌ܯ√݉  and 24 ܽ݌ܯ√݉ , respectively. These values are also comparable to 

the one of Zr-rich metallic glass composite [5]. Although, the facture toughness values for 

the composites reported here may not be exactly equal to the fracture toughness values that 

can be provided by standard fracture toughness tests, nevertheless, a significant toughening 

can be inferred by simple inspection of the load vs. indentation depths (Fig.5.3).  

To understand the essence of the facture, the investigation of the local fracture is very 

important, from which the occurrence of macroscopic fracture is accumulated. In the BMG 

composite as shown in Fig 10.a, when the normalized process zone size (ܿ/ܴ) is 0.14 and 

0.24 for the parallel and normal loading, respectively, the local fracture commenced with 

shear band initiation , which is independent on the mean pressure. For the indentation with 

radius R of 0.8mm, the plastic zone size of the parallel loading composite ܥ௉ is about 2λ and 

the one of the normal loading composite  ܥே  is about 3λ, where λ (65µm) is the interparticle 

spacing of the brass fibers in the indentation direction. Meanwhile, a FEM model with 3D 

hexagon elements by ABQUS was developed to simulate this wedge like cylindrical 

indentation with different radii, in which the composite is assumed to be isotropic, perfect 

plastic and Tresca Criteria was utilized. The FEM results showed that for the radius R of 

0.8mm, when the local fracture loading levels were achieved, the aspect ratio of the process 

zone that the width (B) over the height (A) is around 0.585, which agrees with the ratio of  

ேܥ/௉ܥ ൌ 0.583 from the experimental estimation.  This result has indicated that both critical 
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pressure and the size scale are needed to trigger the local fracture commence, similar results 

were reported about the cleavage fracture in front of the sharp crack tip of mild steel [19].    

As shown in Fig10.b, we observed that sites of the initiation shear band from the 

indenter tip have a same normalized value (0.35) in the homogeneous BMG and the normal 

loading composite, in which the ݖ/ܿ is independent on the radius R. On the other hand, the 

composite of parallel loading case, the location is at 1.15 of the ratio ݖ/ܿ. From the FEM 

results with different radii, at the loading levels that shear band initiated, a radial line was 

extracted under the indenter center, and the stress and strain distributions along this line with 

different radius are summarized in Fig.5. 11. It shows that the maximum tensile strain takes 

place at 0.35 of the ratio ݖ/ܿ for all of three indenter radii and for the R of 0.8mm case, the 

maximum tensile stress is at 1.1 of the ݖ/ܿ  ratio. There are two kinds of local fracture 

mechanisms, critical stress control and strain control. Base on the experimental observation 

and the FEM simulated results, it indicated that both the homogeneous BMG and the normal 

loading composite are critical strain controlled, while the composite of parallel loading is 

critical stress controlled. Therefore, with certain pressure under the indenter, for the parallel 

loading composite, when the critical debonding force was achieved over a characterized size 

scale, the local fracture commenced. However, for the normal loading composite, the local 

fracture started at maximum tensile strain over a critical distance from the indenter tip. 
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Figure 5.11 (a) the variation of the       strain component to the ratio of z/c, where z is the distance between the indenter tip and the 

points on the radial line underneath the indenter, c is the plastic zone size at the nucleation stage. (b) the variation of the tensile 

stress to the ratio of z/c at the parallel loaded composite crack nucleation stage.  
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5.6 CONCLUSION 

The deformation mechanism in Ni-based bulk metallic glass composite has been 

studied by cylindrical indentation tests. The metallic glass composite containing brass 

reinforcing phase shows strong anisotropy in terms of deformation and damage evolution 

behavior. It appears that ductile reinforcements not only promote early nucleation of the 

localized shear bands, but they also intrinsically modify crack growth behavior with crack 

bridging mechanisms. The agreements of the experimental observation and the FEM 

simulation results have shown that the local fracture is stress and strain controlled for the 

parallel and normal loading composites, respectively, over a critical size scale.  
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CHAPTER 6: CONLUSIONS 

6.1 SUMMARY 

In this study, we investigate the inhomogeneous deformation of the BMGs under 

confined geometry loading configuration and their composites’ fracture toughness and the 

toughening mechanism. Wedge-like cylindrical indentation has been used in this study and 

in-house developed digital image correlation program is established to assistant the analysis 

of the plastic deformation evolution.  

Firstly, the DIC technique has been explained and the subset method has been 

calibrated by artificial tension band to exam the localized deformation. Based on the 

investigation of a sequence of artificial bands with different width, it indicates that DIC 

technique overestimates the width of the localization, which is the result from several length 

parameters used in this technique. By exploring the parameters’ contribution during the DIC 

process, an empirical equation has been summarized and the spacing between two continuous 

sub-windows Lg is very important to determine the resolution. Also, the post DIC process 

biases the width and strain level within the localization, in which the strain gauge length 

effects the width estimation and the strain level is much lower than the exact value. Therefore, 

the strain map just could qualitatively highlight the localization but over estimate the band 

width especially for the thin localization band. Generally, to understand the localization 

character by DIC technique, we have to focus on specific localization and analyze the DIC 

result manually to explore the corresponding properties.  
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Secondly, experimental study of the plastic flow characterization with ductile metals 

is used to calibrate the validity of current experimental setup and DIC technique. By digital 

image correlation technique, the strain maps underneath the indenter have been plotted. The 

experimental observation of the shape of the plastic zone has confirmed by the one reported 

in the previous findings about Vickers indentation tests and a unique correlation of the strain 

distribution has been observed along radial line with different angular positions. Self-similar 

manner has been proved in both of the radial dependence of the effective strain and the in-

plane total strain vectors on reduced Mohr-plane at different loading stages. FEM numerical 

solution and analytical solution have been utilized to evaluate the experimental 

measurements. Non-homogeneous plastic deformation and large rotation built up the gradient 

of plastic deformation which requires introducing geometrically-necessary dislocations. Such 

constraint deformation could be the reason that introduces extra hardening capability of the 

material inside of the plastic zone.  

Thirdly, experimental study of the inhomogeneous deformation of bulk metallic glass 

on microscopic level has investigated the evolution of single shear band by fixing the 

observation location inside of shear band, which includes the nucleation strain level, strain 

increments inside of the shear band and the situation of the surroundings. The shear band and 

the surroundings alternatively show their activity and the accumulated strain level inside of 

the shear band is higher than the one of the surroundings about 3 order magnitudes. To 

explain the experimental observation about the shear band nucleation, a theoretical model has 

been used by initializing the experimental parameters and the simulation results are 

comparable with the experimental measurements, which characterizes the shear band 
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initiation and post yield response on the microscopic level. Also, the nature of the shear band 

deformation is simple shear, while the surrounding matrix has pure shear deformation to 

accommodate the shear band propagation. At the same time, the in-plane mean strain 

measurement within the shear band shows the dilatation during the shear band evolution. 

Finally, the deformation mechanism in Ni-based bulk metallic glass composite 

containing brass reinforcing phase shows strong anisotropy in terms of deformation and 

damage evolution behavior. It appears that ductile reinforcements not only promote early 

nucleation of the localized shear bands, but they also intrinsically modify crack growth 

behavior with crack bridging mechanisms. The agreements of the experimental observation 

and the FEM simulation results have shown that the local fracture is stress and strain 

controlled for the parallel and normal loading composites, respectively, over a critical size 

scale.  

6.2 FUTURE WORK 

This dissertation presents an experimental evaluation of Vitreloy-1 the typical BMG’s 

microscopic plastic deformation mechanism, by observing shear band initiation and 

propagation and relating the experimental measurements with the numerical and analytical 

models to explain this BMG’s microscopic response. Also, by same experimental method, 

the Ni-based BMG composite by warm extrusion of gas atomized powders has been studied 

to explain the enhanced ductility and toughening mechanism. In additional, the previous 

study about Vitreloy-1 [1] had already examined how instabilities in amorphous metals form 

and propagate under the cylindrical indentation by examining the validity of various 
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constitutive models and calibrating relevant parameters that are confirmed from BMG’s 

macroscopic experimental response.  

As the typical BMG, Vitreloy-1 have a unique combination of properties such as high 

strength, large elastic strain limit, good formability and corrosion resistance, but fails in an 

unstable manner by a single shear band propagation at room temperature. Therefore, to 

improve the ductility and increase the fracture toughness is of scientific as well as industrial 

interest for the BMGs’ development.  Very recently, high strength BMGs with enhanced 

room temperature ductility have been developed [2-5] that show high yield strength 

(1272~1830MPa) and a “work-hardening-like” behavior. A Cu-based BMG with 

macroscopic hardening under compression test is shown in Fig. 6.1 [2]. The Scanning 

electron microscopy (SEM) observation [2] (Fig. 6.2) of surfaces of deformed samples 

reveals high density of shear bands which are organized in two networks: primary shear band 

parallel to the fracture plane and secondary shear band perpendicular to the previous ones.  

Different reasons have been proposed to explain this intrinsic ductility of BMGs: large 

Poisson’s ratio[3], nanocrystalline during deformation [4,6], the presence of distinct short-or 

medium- range order, and an irreversible production of free volume due to external stress has 

been claimed to be the reason for work-hardening in BMG[7].  At the same time, a large 

number of glassy matrix composites with quasicrystalline, crystalline and nanocrystalline 

second phase dispersions on the nanometer-micrometer length scale have been produced with 

improved mechanical properties by tuning compositions and the volume fraction of the 

second phase dispersions through different fabrication processes. However, optimizing the 

properties require further investigations concerning alloy design and processing conditions. 
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About the monolithic BMG, although the new developed hardening BMGs have been 

developed; the deformation mechanisms are still rather poorly understood. Lots of work 

needs to be done to elucidate the mechanisms of the observed enhanced ductility and 

hardening phenomenon.  

 

Figure 6.1 Stress-strain curves of (a) Cu50Zr50 and (b) Cu47:5Zr47:5Al5 under 

compression at a strain rate of 8 _ 10_4 s_1, showing a highly ‘‘work-hardenable’’ metallic 

glass up to 18% strain. The inset shows the true stress-true strain curve of alloy (b) 

Cu47:5Zr47:5Al5 as obtained from conversion of the engineering stress-strain values.[2] 
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Figure 6.2 (a) SEM secondary electron image of shear bands of Cu50Zr50 representing their 

high density and interactions between primary (black arrows) and secondary (white arrows) 

shear bands, (b) very narrow intershear band spacing observed under high resolution 

scanning electron microscope in a Cu47:5Zr47:5Al5 specimen, and (c) strong interactions of 

shear bands observed on the fracture surface of Cu47:5Zr47:5Al5.[2] 
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APPENDIX: SPECTRAL ANALYSIS OF THE 3D FRACTURE SURFACES FOR 

ENHANCED MATCHING 

 

A.1 BACKGROUND 

The National Institute of Justice (NIJ) has identified high-priority criminal justice 

technology needs1 to aid in confirming the guilty and protecting the innocent. NIJ has 

indentified the need for improved capability to expand the information that can be extracted 

from traditional types of forensic evidence and to quantify its evidentiary value. One of the 

identified areas is the impression evidence, where identification of tools is required for 

quantitative measure and statistical evaluation of forensic comparisons.   

The basis for physical matches is the assumption that there are an infinite number of 

matches all along the fracture break. The factors used in forensic physical matches include 1) 

dimensional consistency, 2) color, 3) shape of the line of the break i.e., zigzag, curved, 

straight, etc.; 4) irregularities from point to point along the line of the break; and 5) any 

toolmarks or  imperfections crossing the broken edge3. A few studies have attempted a 

systematic effort to establish a basis for a physical match. Katterwe4, who examined glass 

and metal samples, concluded that the fracture surface is highly stochastic with randomly 

distributed fracture-branches due to the randomness of the microstructure and the grain sizes. 

Bradley et al.5  performed a study using duct tape as the fractured medium to determine the 

validity and error rate associated with conducting fracture match examinations. When the 

ends were torn by hand (more jagged), the number of matches was higher; 92% versus 81% 
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for cut ends (smoother ends). There were no errors or misidentifications by the team of 

forensic scientists for the jagged hand-torn samples. The authors indicated that some of the 

smooth ends had “insufficient points of comparison to definitively conclude an end match.” 

For fracture surfaces of variety of materials, an additional method is needed to compare 

fractured ends, whenever there are insufficient features for optical comparison to link one end 

to another. Such method should utilize the wealth of the knowledge base for materials 

microstructure and the fracture process zone characteristics.  

Microstructure Feature Scale 

The topographic features of a fracture surface are dictated by the details of the 

material microstructure, as depicted on Fig.A 1. Starting with the general materials’ 

classification, solid materials are crystalline (metals and ceramics), semi-crystalline 

(polymers) and amorphous (polymers and glasses)7.  To limit the discussion, let us focus on 

the class of crystalline materials and more specifically; metals. A chunk of crystalline 

material is typically a polycrystalline aggregate, which is comprised of a collection of 

crystals or grains, having distributions of sizes and rotation or orientation of the crystal 

lattices relative to each other.  These distributions have unique statistical features that could 

enable the forensic fracture feature differentiation process. For example, grain sizes typically 

show log-normal distribution8-13, with the ratio of the diameter of the largest grain in a 

distribution to the median diameter is roughly constant, equal to 2.5 to 38,14.  

 Grain Orientation Distribution Functions15 (ODF’s) in polycrystalline aggregate are 

also bounded.  Most structural metals have a cubic crystal structure which exhibit the highest 
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degree of crystal lattice symmetry and thereby reduces the complexity of the orientation-

relationship between grains through symmetry operations.  A orientation mismatch between 

two crystal lattices defines the crystal boundary or the grain boundary16-22.  A single grain 

would be defined as a collection of crystals with a similar orientation or misorientation below 

a set value of 3o-5o 23-27. Orientation of each grain is characterized by means of three 

parameters such as the Euler angles.  The ODF’s are graphically represented by what is 

termed in material science; the pole plot26. In addition, most of structural materials 

experience final stage of mechanical and thermal processing that leaves significant 

crystalline distortion, or texture. In this process, the grains within the bulk of the specimen 

undergo local rotation to realign the most favorable slip or deformation direction with the 

direction of the macroscopic loading. As a result, the material becomes highly textured, with 

majority of the gains exhibiting almost the same crystallographic orientation. Each finishing 

process (e.g. rolling, extrusion forging, stamping) presents unique ODF’s that could be utilize 

to screen the main class of the material26. The combined measurements, characterizations and 

utilizations of data library from earlier studies for the microstructural details of the material 

will provide many statistical features that could enable the forensic fracture matching process. 

Fracture Process Scale 

The fracture surface topography is dependent on the microstructure details of the 

material and the dynamics of the fracture event. The size of deformed features on the fracture 

surface is associated with patterns of local primary shear bands that form in areas defined by 

the size and spacing of individual dendritic (solidification) features that arrest the crack 

extension28. Crack initiation and growth depends on the crystallographic structure, 
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orientation and the plastic strain amplitude to failure.29,30 Any method to characterize fracture 

surfaces needs to capture and model the interplay between the external load imposed length 

scale and the microstructural feature scale. 

In mechanics, mathematical descriptions of fracture depend on establishing a 

representative material element32-33 to approximate the material microstructure (cf. Fig.A 1). 

The material resistance to fracture which includes crack nucleation, crack coalescence, and 

the growth of short cracks is dependent on the complex and random microstructure (e.g. 

distribution of defects and grain oreintation33). For example, statistics of cracks in concrete 

exhibit features of Brownian motion34. The statistics of crack growth varies with the average 

grain diameter. Intergranular crack trajectories are more predictable since the crack surface 

coincides with grain boundaries. To the contrary, transgranular fracture is more complex due 

to a larger set of possible crack trajectories34. Accordingly, the topographic features scale and 

amplitude on the fracture surface would be very different for the two cases. Moreover, these 

features are very different between ductile (associate with rough surface at the micron and 

submicron scale, dominated by dimples and void coalescence) and cleavage fracture (much 

smooth appearance that spans many microns upto the gain scale). Characterization of the 

interplay between the distribution patterns of the gain size and orientation, and the fracture 

process should provide features of the fracture surface topography that can be utilized in the 

forensic fracture match.   

Current Study 
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This study focuses on ascertaining that the fracture surface topology of different 

fractured segments is dependent on the ratio of the local stress state (i.e. load severity) vs. the 

local material resistance to fracture. The material resistance to fracture is dictated by the 

microstructure (grain size, grain boundary angles, and defect population; e.g. pores and 

inclusions) as well as the intrinsic local material chemistry and bond strength. These complex 

microstructure details, combined with the characteristics of the applied load, have the 

potential to provide a quantitative signature of the fracture surface in the form of spatial 

feature size and orientation. While physical characterization of material properties and 

processing conditions will guide the selection of appropriate data, careful attention must also 

be paid to the unavoidable “noise” associated with material variability and measurement 

error; validation of our method will require experimental evaluation to demonstrate that such 

variation is small enough to lead to potentially acceptable error rates.35  



154 
 

 

 

Figure A.1: Interaction of the crack trajectory with the material length scale, viewed at a 

progressively coarser scales (McClintock, 1966)
6  

We will establish a quantitative figure of merit and acceptance/rejection criteria to be 

used in the comparison. The bases of the procedure are derived from the quantitative details 

of the material microstructure and the established concepts of fracture process zones in the 

field of fracture mechanics2. We will focus on gathering data representative of the material 

grain size distribution, and the void and dimple scale of the fracture process zone. Primary 

efforts of identifying the population would focus initially on metal fragments, especially 

those alloys and processing conditions for typical knifes and pry tools.  In principle, the 
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proposed method is very general and can be applied to metallic, polymeric, glass and ceramic 

fragments, especially since it can be self-calibrated for each new class of materials to 

establish the base-line and will be discussed in later section.  The proposed framework 

should help determine the likelihood that certain broken pieces would/not match the broken 

piece found at the crime scene. 

A.2 IMPLEMENTATION METHODOLOGY 

Data Collection Protocol 

The pairs of fracture surfaces will be analyzed by a standard non-contact 3D optical 

interferometer (Zygo-NewView 6300). The interferometer provides a height resolution of 

20nm and spatial inter-point resolution of 0.45µm. Surface height topographic maps will be 

acquired from the pairs of fracture surfaces. These height topographic maps will be quantized 

using spectral analysis as shown in Fig.A 2 for a broken chisel fracture surface. From the 3D 

contour heights (Fig.A 2(a)) one can generate the spatial height distribution in any desired 

direction (Fig.A 2(c)). For illustration, the spectral analysis of such 2D data set (depicted on 

Fig.A 2(d)) has the potential to provide a discriminating distribution of features on the 

surface. For example, the river mark within the lower portion of Fig.A 2(a) yields 

characteristic spectra on Fig.A 2(d). Other feature characteristics are also marked.   

 



156 
 

 

 

Figure A.2: Typical set of measurement and analysis for fractal surface showing the unique 

signature of the fractal surface. (a) 3D height map. (b) 2D rendering. (c) 1D line profile. (d) 

1D spectral description.   

Here we will explore the suitable mathematical expressions to identify the proper 

scales (or frequencies) for comparison as well as the degree of similarities and the associated 

error. There is a trade-off between the size of the imaging window, which defines the largest 

wavelength to be detected (low-frequency cut-off), and the spatial resolution, which defines 

the smallest wavelength to be detected (high frequency cut-off). These two limits are dictated 

by the mesoscopic fracture surface features (100-1000µm), the microstructure grain size (1-

100µm) and the details of the fracture mechanism (0.05-1µm).  A balance between the two 
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frequency limits is achieved by selecting the proper magnification for the high frequency 

limit (fraction of the Nyquist frequency), then perform multiple image stitching to target the 

lowest required frequency.  

Analysis and Physical Matching 

The goal is to provide a basis for rendering an interpretation of whether or not the two 

fracture fragments originate from the same source (i.e. same body and same loading events). 

This process will be carried out by identifying the degree of similarity between the two 

spectra of the fracture pairs, and developing a representative measure for the degree of 

matching. The proposed uniqueness of this approach stems from matching three to five (or 

more) independent features on the surface; each of them has its own distribution and quality 

of the match. Each of these features would ascertain different issues for individuality of the 

match.  For example, the river mark signature and the micro-fracture dimpling or cracking 

would ascertain that the pair of surfaces belongs to the same fracture event.  The analysis will 

be carried out in the following steps. 

Image Pair Alignment: On the plane of the crack surface, there are two principal axes, 

the crack propagation direction and the direction of the crack tip. The images of the fracture 

pairs ought to be aligned relative to this reference axes.  In addition, for highly textured 

samples, there would be preferential misconstrue direction (direction of rolling or extrusion) 

that has to be considered in alignment. Otherwise, angular phase difference between the 

wave-numbers (a vector representation of 3D frequency spectra) will occur. Therefore, care 

should be given in visually aligning the fracture surface pairs, before acquiring the 3D 



158 
 

 

surface topography. Then, a macroscopic autocorrelation of the real 3D profile will be 

applied to the image pair to maximize their relative rotational alignment. Alternatively, a 2D 

spectral analysis would be utilized wherein a 2D vector wave number will be employed in 

the autocorrelation to find the angular separation between the two images.   

Image Pair Spectra Analysis: Each feature on the fracture surface has a population. 

For example, grain size is not single frequency content within the spectrum as indicated in 

Fig.A 2(d), but rather has a distribution. The first step of the analysis will be to identify the 

scale of the significant features on each image pair and their populations. For a pair of 

fractured surfaces, the population of these features will incorporate relevant information 

about the physical processes present at each length-scale. After calculating the spectra of 

each pair of images, each spectrum will be divided into multiple radial and angular zones. 

The segmented angular sectors for the frequency range (-15o, 195o) will represent the entire 

data set, since the frequency space representation exhibit inversion symmetry (Fig.A3). The 

radial segments are to be chosen to reflect the physical process scales. The centroid of the 

wave number for each sector is evaluated as ( ),r θK . The difference of the corresponding 

wave numbers are evaluated and averaged over the angular sector to provide a correlation 

measure, ( )rK , for the match at different frequency (r is the radial distance on the frequency 

spectra, (1/mm)), ( ) ( ) ( )( ) ( ) ( )( )1 2 1 2
1

, , 0.5 , ,
n

r r r r r
θ

θ θ θ θ
=

= − +∑K K K K K .  

Self Calibrated Matching: The correlation measure ( )rK  cannot be utilized to decide 

on the match, without understanding the distribution of the population for each of the fracture 
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and the microstructure length scales.  To establish a reference, several pairs of images are 

recorded on the same fracture surface (one side only of the fracture pair) but at different 

spatial locations. The resulting correlation measure refK  will approximately represent the 

statistical distribution of many of the material and fracture process scales.  The proposed self-

calibrated indices should greatly strengthen the methodology, and perhaps make it applicable 

across a wider variety of materials.  Efforts will focus on the error rate in establishing this 

reference level. It will be carried out by finding the variance in the comparison indices for ten 

different pairs of images acquired on the same side of the fracture surface, and their variance 

relative to the other side. It should be noted that the established variance of the baseline 

should not be mistaken as directly address population-wide errors, as will be discussed in 

later sections. 

Once a baseline is established, ( ) ( ) refr rΔ = −K K K can be considered as a figure of 

merit for the match at each frequency.  By definition, ( )rΔK  can have positive and negative 

values. Figure 4 shows the figure of merit distribution, ( )rΔK  as a function of the fracture 

surface topography frequency, relative to the established reference level, refK  (marked by 

the dashed line), for two cases, a matched pair and a pair of the same class.  Also shown on 

the same curve, the variation of ( )ref rΔK relative to the established reference at the 

frequency of interest to show the spread in the base line representation. For the matched 

fracture pair, Fig 4(a), most of the ( )rK  values fall within the reference level. For the same 

class pair, Fig 4(b) frequencies that represent the material microstructure are the only match.  
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Figure A.3: (a) Color render of the surface topography. (b) Corresponding frequency spectra.                (c) Division of the spectra 

to different sector for comparison based on the fracture process physical scales. (Data is from a 3point bend fracture of SS-440C 

steel).  

 

 

 

(a)                                               (b)                                               (c)
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Figure A.4: Establishment of base line for the Figure of Merit comparison through self calibration (red symbols) (a) A fracture 

pair. (b) A pair of the same class but not matched.  
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A.3 CASE STUDY 

A typical knife and tool material (SS-440C) with a precursor notch will be examined 

under defined loading conditions in a flexural 3-point bend test (Fig.A 5(a)). This 

configuration provides an unstable crack propagation to mimic the cleavage fracture, 

commonly found in a crime scene. Two paires of SS440C samples broken in two different 

directions, the first pair is P29-W08 and the second pair is K23-S01; the third surface is an 

unrelated copper fracture surface with the same grain size. 

 

Figure A.5: Set of samples to be tested in the first phase. (a) Controlled 3 point bend fracture. 

(b) Set of representative knife breaking; provided by J. Morris. 

For each sample, there is a statistical variation of the frequency. The amplitude of the 

difference grows with frequency. Thus we have to establish this band and its dependence on 

the frequency by comparing pairs of images on the same fracture surface, at each 

magnification as shown in Fig.A6. After establishing the base line of each surface, we 

compare their difference frequency relative to the base line of one for the surfaces for each 

pair of images. By analyzing a matched pair (P29-W08) and unmatched pair (with copper, 

but similar grain size), the established figure of merit indicates that the best accretive domain 

(a)                      (b)
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is the range up to f=200(1/mm) or features of 5 microns or higher. This was quite clear on the 

10x magnification (Fig.A7 a). At higher magnifications (Fig.A7 b), the trend is not clear at 

all since the signal to noise ratio is very low. Thus it appears that around 10x produces the 

best assertive field of view. Matching also may not be at all frequencies. Also, the analysis 

shows that the fracture surface topography provides assertive differentiation for the class 

(same type of knife material) and individual characteristics matches (fragment surface 

“should” belong to the same fracture event). To study the same materials but different events, 

a comparison is conducted for two different pairs: W08-P29 constitute match and W08-S01 

constitute no match. The Fig.A8 shows that despite the similarity at 4 frequecey bands (same 

material, and similar fracture type), the W08-S01 still has more differences from the base line 

band than the W08-P29 pair. Thus we can formulate a figure of merit for the entire spectra to 

show the quality of the match.  

 

Figure A.6:  Multiple comparing pairs of images taken on the same fracture surface, at 

different magnifications  

Fracture surface

Window2:
10-100x

Window3:
10-100x

Window1:
10-100x
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Figure A.7:  The best accretive domain is range up to f=200 (1/mm) and it is clear on 10x Mag. (a) 10x magnification (b) 50x 

magnification. 
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Figure A.8:  The comparison of same material, but different events.  

 

A.4 FUTURE WORK 

Crime Scene Samples: Other material specimens, representing common crime scene 

pieces, will be surveyed such as wider range of irregular geometries. These include non-

planar fractures, and those associated with significant bending of the fracture surface; 

commonly associated with breaking of knives and pry tools. Our forensic scientist 

collaborator will select and provide these sets of samples, similar to those depicted on Fig.A 

5(b) of irregularly broken knives. These samples are provided with coded unmatched pairs 

for blind study. The specimen sets will be also matched through established protocol at the 
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forensic lab for comparison. Once the technique reaches maturation level, it would be also 

applied to fragments of broken plastics ceramic and glass with radial or circular topographic 

features on the fracture surface. 

Technical Challenges and Image Limitations: Several issues or challenges remained 

to be addressed throughout the protocol development. First, trials will address placement of 

specimens for measurement of the fractures with wide macro-variation in surface features 

(Form factor >0.5mm), such as those associated with knife fracture with significant fracture 

surface curvature.  The second issue is statistical significance of the known match versus the 

known non-match. This study will examine the size of the data set that would yield the 

proper surface topography population to identify each unique feature. The size of the data set 

expands quadratically with the required resolution.  An optimization process should yield the 

proper size of the data set.  

Analysis of Environmental and Weathering Effects: Degradation of forensic evidence 

over time, or exposure of an evidence to accelerated corrosive environment before being 

retrieved is one of the limiting factors for forensic match. The proposed 3D topographic 

fracture surface analysis will provide details of how ageing and environmental exposure 

deteriorates some of the microstructure and fracture process zone details overtime. It should 

be also noted that the corrosion rate is accelerated in the presence of residual stresses39. It has 

been shown that based on the iso-electric point of the corrosive environment, some 

wavelength on the surface can decay and others can grow (e.g. erosion of dimples and 

widening of crevasses). Studying the details of these factors is beyond the scope of the 

proposed framework, though it could be implemented in future studies.  
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